
Making Music with
Abc 2

A practical guide to the Abc notation

Guido Gonzato

Making Music with
Abc 2

Making Music with Abc 2 (formerly, Making Music with Abc Plus)
Version: October 2021
Copyle� ©Guido Gonzato, PhD, 2003–2021
Image cover by Vera Kratochvil, via h�p://www.publicdomainpictures.net
Typeset with LATEX, with the help of the Jed editor and LATEX4Jed.
�is manual is released under the terms of the GNU Free Documentation License 1.3:
h�p://www.gnu.org/licenses/fdl.html

�e latest version of this manual is available at:
h�p://abcplus.sourceforge.net/#ABCGuide

http://www.publicdomainpictures.net
http://www.jedsoft.org/jed/
http://www.ctan.org/pkg/latex4jed
http://www.gnu.org/licenses/fdl.html
http://abcplus.sourceforge.net/#ABCGuide

To Annarosa,

Bruno,

Lorenzo

�

Contents

About �is Guide xv

1 Music on the Computer with Abc 2 1

1.1 Introduction . 1
1.1.1 Requirements . 2
1.1.2 So�ware . 2
1.1.3 Why Abc? . 3

1.2 Ge�ing Started . 4
1.2.1 Ge�ing the Programs . 5
1.2.2 Which Program? . 5

abcm2ps . 6
abc2svg . 6
abcMIDI . 6
Abc/MusicXML Translators . 6
TradMusician . 7
Other Programs . 7

1.2.3 Abc in a Nutshell . 7
1.2.4 Our First Abc File . 8
1.2.5 Using the Command Line . 9

Windows . 9
GNU/Linux, macOS . 11
Android (expert users only!) . 13
Explanations, for everybody . 14

2 Melody 15

2.1 Notes and Symbols . 15
2.1.1 Manual or Automatic Forma�ing? 15
2.1.2 Note Pitch: A-G a-g ,’ . 15
2.1.3 Note Length: L: . 17
2.1.4 Rests and Spacing: z Z x y . 18
2.1.5 Accidentals: ^ = . 19
2.1.6 Do�ed Notes: < > . 19
2.1.7 Ties, Slurs, Staccato: - () . 20
2.1.8 Tuplets: (n . 21
2.1.9 Chords: [] . 22
2.1.10 Grace Notes: ~ {} . 23
2.1.11 Inline Fields . 23

2.2 Music Properties . 24

v

2.2.1 Key signatures and Clefs: K: . 24
Key Signatures . 24
Clefs . 25
Changing the Clef: I:clef . 27
Bass and Alto Clefs Compatibility Issues 27

2.2.2 Time Signature: M: . 28
2.2.3 Bars, Repeats, Endings: | / : [] 29
2.2.4 Lyrics: W: w: . 30
2.2.5 Title, Composer, Tempo: T: C: Q: 32
2.2.6 Text and Foreign Characters . 33
2.2.7 UTF-8 Characters and Symbols . 34
2.2.8 Parts: P: . 36
2.2.9 Accompaniment Chords: "" . 37
2.2.10 Text Annotations: "^ <>@" . 38

Courtesy Accidentals . 39
2.2.11 Decorations: !symbol! . 40
2.2.12 Symbol Lines: s: . 42

Figured Bass . 43
2.2.13 Rede�nable Symbols: U: . 43

3 Harmony 45

3.1 Polyphony in Abc 2 . 45
3.1.1 Voices and Systems: V: . 45
3.1.2 Positioning Voices: %%score . 49
3.1.3 Typese�ing Reductions . 53
3.1.4 Voice Overlay: & . 55
3.1.5 Writing Clean Sources . 56

4 Formatting 59

4.1 Forma�ing Parameters . 59
4.1.1 How Directives Work . 60
4.1.2 Using Format and Header Files . 62
4.1.3 Changing Parameters . 63
4.1.4 Directives as I: Fields . 63
4.1.5 Using Fonts and Text . 65
4.1.6 Line, Sta�, Tune, and Page Breaks . 68
4.1.7 Avoiding Line Breaks . 70
4.1.8 Controlling Measures . 71
4.1.9 Voice Size . 72
4.1.10 Repeated Sequences (Simile) . 72
4.1.11 �e Grand Sta� . 73
4.1.12 Change of System . 73

Blank Sheet Music . 74
4.1.13 Positioning Music Elements . 76
4.1.14 Customising Slurs, Beams, Stems, and Flags 77
4.1.15 Customising Accompaniment Chords 78
4.1.16 Customising Tuplets . 79
4.1.17 Customising Volta Brackets . 80

vi

4.1.18 Combining Voices . 80
4.1.19 Colours . 81
4.1.20 Multi-column Output . 82
4.1.21 Customising Titles . 83
4.1.22 Headers and Footers . 84
4.1.23 Inserting Graphics Files (abcm2ps) 85
4.1.24 Numbering Measures and Pages . 86
4.1.25 Sta� Gaps . 86
4.1.26 Ambitus (abc2svg) . 87
4.1.27 Embedding XHTML (abc2svg) . 87
4.1.28 Saving Space . 88

4.2 Transposition . 88
4.2.1 Using %%transpose . 89
4.2.2 K: and V: Modi�ers (abc2svg) . 89

5 Tablatures and Fingering Charts 91

5.1 Tablatures . 91
5.2 Chord Grids . 92
5.3 Chord Diagrams . 93
5.4 Fingering Charts (abcm2ps) . 95

6 Tune Collections 97

6.1 Index Number: X: . 97
6.2 Information Fields . 98
6.3 Including Abc Files . 99
6.4 Songbooks . 99
6.5 Selecting Tunes . 101
6.6 Incipits . 102

7 Playing 105

7.1 MIDI Conversion . 105
7.1.1 A So�ware MIDI Player: TiMidity++ 106
7.1.2 Our First Midi . 106
7.1.3 Example: How To Make a Ringtone 107
7.1.4 Supported Decorations . 108
7.1.5 %%MIDI Directives . 108
7.1.6 Avoiding abcm2ps Extensions . 109
7.1.7 Voices and Instruments . 109
7.1.8 MIDI Transposition . 110
7.1.9 Changing Instruments in Repeats . 111
7.1.10 Accompaniment Chords . 111
7.1.11 New Accompaniment Chords . 113
7.1.12 Customising Beats . 114
7.1.13 Arpeggios . 114
7.1.14 Broken Rhythm . 115
7.1.15 Drum Pa�erns . 116
7.1.16 Percussion Instruments and Drum Mapping 117
7.1.17 Portamento . 118

vii

7.1.18 Drone . 118
7.1.19 Global Se�ings . 119

7.2 Di�erences and Incompatibilities . 120

8 Advanced Customisation 121

8.1 Font Directives, Revisited (abc2svg) . 121
8.2 New PostScript and SVG Routines . 122

8.2.1 De�ning New Symbols . 123
8.3 Note Mapping . 125
8.4 Renaming Symbols . 126
8.5 Accompaniment Chords in Italian Notation 127
8.6 Adding Text Fonts (abcm2ps) . 128
8.7 Adding Text Fonts (abc2svg) . 130
8.8 Using SMuFL Fonts . 131

9 Abc and MusicXML 133

9.1 Introducing MusicXML . 133
9.2 Using xml2abc-js . 133
9.3 Using abc2xml.py and xml2abc.py . 134

9.3.1 Basic Options . 135
9.4 Converting Abc to MuseScore . 135
9.5 Converting Abc to Lilypond . 136
9.6 Converting Abc to Verovio . 137
9.7 abc2xml.py Extensions . 137

9.7.1 Tremolo . 138
9.7.2 Percussion Maps . 138
9.7.3 Tablatures, Revisited . 141

9.8 Abc/MusicXML Conversion: Limitations . 144

10 Advanced Usage 147

10.1 Cropping PDF Files . 147
10.2 Using abc2svg in the Command Line . 148

10.2.1 Running abc2svg Scripts . 148
10.2.2 Converting html to PDF . 149
10.2.3 Inserting Music in Word Processors 150
10.2.4 Inserting Music in LATEX . 150

10.3 Using abc.sty . 151
10.4 Converting MIDI to Abc . 152
10.5 �e abcpp Preprocessor . 153

10.5.1 Basic Usage . 153
10.5.2 Rede�ning Symbols . 154

10.6 Conversions: abc2abc . 155

11 �e End 157

11.1 What Now? . 157
11.2 Final Comments . 157
11.3 In Loving Memory of Annarosa Del Piero, 1930–2000 157

viii

A Bits & Pieces 159

A.1 Web Links . 159
A.2 Abc Fields . 160
A.3 ABC Summary . 160
A.4 Common Errors and Bad Practices . 164

A.4.1 Syntax Errors . 164
A.4.2 Character Encoding . 164
A.4.3 Lines Too Long . 164
A.4.4 X: Number in Titles . 164
A.4.5 Ties vs. Slurs . 165
A.4.6 Outdated Syntax . 165

Q: Syntax . 165
! as End of Line . 165
+ for Decorations and Chords . 165
\ in w: Lines . 165
middle= Speci�er . 165

A.5 Forma�ing Directives . 165
A.5.1 Page Format . 167
A.5.2 Text . 167
A.5.3 Fonts . 168
A.5.4 Spacing . 170
A.5.5 Other Directives . 172
A.5.6 Deprecated Directives . 177

A.6 PostScript Fonts . 179
A.7 abcMIDI Directives . 179
A.8 MIDI Instruments . 183

A.8.1 Standard instruments . 183
A.8.2 Percussion Instruments . 184

ix

x

List of Tables

1.1 Note names in English and Latin notation. 14

2.1 Modal scales. 24
2.2 Clefs and associated K: �elds. 26
2.3 How to obtain characters of foreign languages. 34
2.4 Types of accompaniment chords. 37

4.1 Default fonts for abcm2ps and abc2svg. 65

5.1 Keys for the flute.fmt format �le. 95

7.1 Standard notes and corresponding MIDI pitches. 119

xi

xii

List of Figures

1.1 Writing a tune in a web browser using abc2svg. 9

2.1 Standard decorations. 41

4.1 A piece with a variable number of systems. 75

9.1 Importing and displaying MusicXML �les in xml2abc-js. 134

xiii

xiv

About �is Guide

This manual explains how to make beautiful sheet music and MIDI �les using a computer,
some free and open source so�ware, and the Abc 2 music notation. It is aimed at musi-

cians with some computer expertise who don’t want to spend a lot of money on commercial
music so�ware. Music teachers, students, amateur and professional musicians may bene�t
greatly from this guide and from the so�ware it describes.

�is manual comes in printed and electronic versions; the la�er is accompanied by a few
audio �les. Just like the so�ware that is used to make the music, this manual is free and open
source, and can be freely copied and shared.

I hope you will �nd my work useful and enjoyable.
Cheers,

Guido Gonzato, PhD =8-)

xv

xvi

Chapter 1

Music on the Computer with Abc 2

1.1 Introduction

Musicians who can also use a computer are very lucky people. First of all, because they
are musicians; secondly, because the computer is an excellent tool for writing and ma-

naging music. Lots of programs are available.
Most music notation programs have a visual (or WYSIWYG) approach: one or more staves

are displayed on the screen, and the user drags and drops notes and symbols using the mouse.
An alternative approach is writing music using a text-based notation. �is is a non-visual
mode that represents notes and other symbols using characters. A specialised program then
translates the notation into printable sheet music in some electronic format (e.g. in PDF)
and/or into a MIDI �le. Visual programs are easier for beginners and are probably more
intuitive, but text-based notations make for faster transcription and have other advantages.

Many text-based notations have been invented. �eAbc notation was introduced by Chris
Walshaw in 1993, and is one of the best available: being simple, easy to learn yet very pow-
erful, it has gained widespread popularity. �ousands of tunes wri�en in Abc are available
on the Internet: in fact, this notation is the de facto standard among folk musicians. For more
information, please refer to the o�cial Abc home page: h�p://abcnotation.com.

Abc was later expanded to provide multiple voices (polyphony), page layout details, and
MIDI commands. �is major release of the Abc notation is called Abc 2.

A few programs implement most Abc 2 features and provide some extensions, which
in turn may become part of the Abc 2 standard in the future. �e purpose of this guide is to
introduce the reader to Abc 2 and the most important features of its related programs. Ideally,
people who could bene�t from Abc 2 are:

• folk musicians who would like to learn as li�le Abc as necessary to understand the �les
they �nd on the net. �ese people can skip the part about harmony, and probably do
not need to study this guide thoroughly;

• classically trained musicians who would like to use Abc 2 for typese�ing their scores.

In both cases, if you wish to print sheet music for your choir or band, or make a song book,
or even teach music, you have found the right tool. As an additional bonus, all programs are
free and open source.

�e uno�cial Abc 2 home page was created to provide ready to use so�ware and docu-
mentation: h�p://abcplus.sourceforge.net.

1

http://abcnotation.com
http://abcplus.sourceforge.net

2 CHAPTER 1. MUSIC ON THE COMPUTER WITH ABC 2

A Few Words About “Standards”. Although Abc 2 is formally de�ned, what you get
using so�ware di�ers slightly from the theoretical standard. �is guide will concentrate on
practical implementations of Abc 2, rather than theoretical features.

To avoid confusion, deprecated syntax variations of oldAbc releases will not be explained,
or even mentioned unless strictly necessary. �e following chapters will cover most features
and options of the best available programs.

In conclusion: for the sake of simplicity, in the following I shall simply write “Abc” instead
of “Abc 2”.

1.1.1 Requirements

I assume that you have a PC with Windows, macOS, GNU/Linux or other Unix variants, and
that you are reasonably familiar with computers. An Android tablet, or even a phone, is a
viable alternative.

Expertise in the Windows or Unix command line interface is not required. It is required,
however, that you can read music: the treble clef and two octaves starting at middle C should
su�ce.

1.1.2 So�ware

First of all, I would like to stress that Abc is not tied to a speci�c program. Abc is a musical
notation that can be typeset, i.e. turned to music printed on paper or displayed in web pages.
It can also be played and/or turned to sound �les by several applications, each of which is
just an Abc implementation.

�e state of the art of Abc implementation is currently represented by a few great li�le
programs: the abcm2ps and abc2svg scorewriters, the MIDI creator abc2midi, the Abc/Mu-
sicXML translators abc2xml.py and xml2abc.py, and the TradMusician player. All these
programs are free an open source so�ware, released under the GNU GPL license.

abcm2ps, wri�en by Jean-François Moine, readsAbc �les and converts them to PostScript.
�is is a �le format closely related to PDF, and it can be viewed and printed with another free
program called Ghostscript. �is application converts PostScript �les into several formats,
PDF being the most important.

A twin program to abcm2ps is abc2svg, which is basically abcm2ps rewri�en in Java-
script. abc2svg can be integrated in web pages to provide an Abc editor, viewer, and player
that works in any web browser.

abc2midi converts Abc �les to MIDI. It is part of the abcMIDI package, wri�en by James
Allwright and currently maintained by Seymour Shlien. abcMIDI includes other utilities that
convert Abc and MIDI �les in several ways.

As their names suggest, the abc2xml.py and xml2abc.py translators, wri�en by Willem
Vree, convert music wri�en from Abc to MusicXML and the reverse. MusicXML is an open
format for exchanging digital sheet music, and is supported by many professional applica-
tions.

Last but not least: TradMusician, wri�en by Nicolas Jouve, is a complete Abc player and
viewer for Android.

Please note that abcm2ps, abc2svg, abcMIDI, the Abc/MusicXML tools, and TradMusi-
cian are not completely compatible with each other : each program supports extensions to the
Abc standard and/or lacks some features. Usually, this is not a problem; besides, one should
expect minor di�erences, as applications target di�erent musical aspects. For instance, music

1.1. INTRODUCTION 3

elements that only make sense in a printed score (e.g. a text annotation) are not supposed to
produce playback. In the following chapters, these di�erences will be highlighted.

Since Abc �les are plain text �les, an essential tool for writing them is a good text editor.
Countless free editors exist, some of which have specialised facilities for editing Abc �les. In
general, any application that can be used to write text can also be used to write Abc �les.

It’s important to stress that abcm2ps, abc2midi, part of abc2svg, and the abc2xml-

.py/xml2abc.py translators are command-line programs: in short, you cannot start them
double-clicking on their icons, or selecting them from a menu. To use these programs, you
will have to open a command shell (Windows Command Prompt, Unix or Android terminal)
and type commands.

People with limited computer expertise need not worry. First of all, using the programs in
the command line is trivial. Besides, there are applications, and even web pages, that gather
all relevant pieces of so�ware in a single integrated environment. Currently, one of the most
popular is EasyABC, a free and multiplatform application that displays and plays the music
using the command-line programs internally. More �ne so�ware options are listed at the
Abc 2 and Abc home pages.

1.1.3 Why Abc?

I know from experience that graphical programs, most of which are commercial so�ware, are
perceived to be easier to use than non-graphical ones. �is is a common misconception, but
only expert users realize it. So, why should one learn Abc?

Well, compared to graphical programs and even other text-based notations Abc has many
advantages:

text only: the importance of this feature can’t be emphasised enough. Being simple text,
Abc music can be read, wri�en and stored by any computer system on the Earth; it
can be used by visually impaired people, emailed, texted by phone, scribbled down on
beermats, etc.

readability: as stated at the Abc home page:

One of the most important aims of abc notation, and one that distinguishes
it from most computer-based musical languages is that it can also be read
easily by humans. In other words, with a li�le practice, it is possible to play
a tune directly from the abc notation without having to process and print it
out. �e resulting compactness—each tune is about the same as a paragraph
of text—and clarity makes it very easy to notate tunes.

features: Abc supports nearly all features of Western music including multiple voices and
staves, symbols, dynamics, lyrics, text annotations, and much more;

indexing: Abc allows for easy creation, searching and indexing of tune books and music
archives, many of which are freely available on the web;

scalability: with Abc you can create scores from very simple to highly sophisticated;

ease of use: Abc is easy to learn, and a�er a li�le practice it becomes very intuitive;

quality: using abcm2ps or abc2svg, Abc produces publication quality sheet music;

4 CHAPTER 1. MUSIC ON THE COMPUTER WITH ABC 2

price: while commercial so�ware is o�en expensive, nearly all programs for making Abc
music are free, and can be freely copied and shared with your friends or students;

openness: Abc is an open standard and it has no owner, so it can be freely implemented by
everyone royalty-free;

low resources: Abc programs are very light on resources and can run on old computers, or
even tablets and smartphones;

portability: music is created as SVG or PDF and MIDI �les instead of proprietary �le for-
mats. Open formats let you share your music with everybody, not only people who
have the so�ware to produce it;

multiple formats: Abc programs make music that can be printed on paper, or viewed on
computer screens, or managed with tablets and phones;

speed: writing music in Abc is much faster than using any graphical program;

learning value: if you teach music, Abc in an invaluable tool that facilitates the learning of
music theory.

Needless to say, there are disadvantages as well:

learning curve: while a graphical program may allow you to get started right away (at least
in theory), Abc requires that you take your time and study the syntax before you can
get started;

�le conversion: if your work environment forces you to use a speci�c commercial program,
you may �nd it di�cult or impossible to convert existing music �les to Abc and vice
versa;

limitations: Abc can’t do everything. Currently, it can’t deal with Gregorian chant, con-
temporary music notation, and non-European music;

compatibility: some Abc programs provide extensions to the standard (e.g. tablatures and
guitar diagrams) that other programs can’t deal with.

To overcome the �rst hurdle, this guide is hopefully a good start; but I also recommend
that you look at some scores to see real-life examples of Abc in action. �e Abc home page
has many links to Abc collections; on the Abc 2 page you will �nd more complex choral
scores.

1.2 Getting Started

In order to write music with Abc, there are two main options: you could use abc2svg in a
web browser, or the command line programs. �e �rst option is easier, the second is more
powerful but more complex.

In the la�er case, you’ll follow these steps:

1. using a text editor, write the tune using the Abc syntax;

1.2. GETTING STARTED 5

2. convert the tune with abcm2ps, creating a PostScript �le;

3. view the PostScript �le and convert it to PDF;

4. optionally, create a MIDI �le with abc2midi.

If the music you write is free from copyright, please consider sharing it on the web for
others to enjoy.

1.2.1 Getting the Programs

Relevant web pages:

• the abcm2ps scorewriter:
h�p://moinejf.free.fr
h�p://abcplus.sourceforge.net/#abcm2ps (ready to install packages)

• the abc2svg online scorewriter:
h�p://moinejf.free.fr/js/edit-1.xhtml

• abcMIDI:
h�p://ifdo.ca/∼seymour/runabc/top.html
h�p://abcplus.sourceforge.net/#abcMIDI (ready to install packages)

• the Abc/MusicXML translators:
h�ps://wim.vree.org/svgParse/abc2xml.html
h�ps://wim.vree.org/svgParse/xml2abc.html

• TradMusician:
h�p://nicolasjouve.fr/tradmusician/

• Ghostscript (all platforms except Android):
h�p://www.ghostscript.com/
As of this writing, the latest version is 9.55; you may want to download the free, GNU
A�ero licensed version.

• Ghostscript for macOS:
h�p://pages.uoregon.edu/koch/Ghostscript-9.55-Full.pkg

• Sumatra PDF, a fast PDF and PostScript viewer (Windows):
h�ps://www.sumatrapdfreader.org

Ready-to-run packages for Windows, GNU/Linux, macOS, and Android are available from
the Abc 2 web site. Besides, all GNU/Linux distributions include Ghostscript and a document
viewer that reads PostScript. SVG output can be viewed with any web browser.

At the moment, Android has no Ghostscript support and only SVG output is usable.

1.2.2 Which Program?

�e choice of the Abc program that be�er suits you depends on your needs. In fact, each
program has advantages and disadvantages, and gives its best in di�erent cases. �ere is no
such thing as “the best” Abc program.

http://moinejf.free.fr
http://abcplus.sourceforge.net/#abcm2ps
http://moinejf.free.fr/js/edit-1.xhtml
http://ifdo.ca/~seymour/runabc/top.html
http://abcplus.sourceforge.net/#abcMIDI
https://wim.vree.org/svgParse/abc2xml.html
https://wim.vree.org/svgParse/xml2abc.html
http://nicolasjouve.fr/tradmusician/
http://www.ghostscript.com/
http://pages.uoregon.edu/koch/Ghostscript-9.55-Full.pkg
https://www.sumatrapdfreader.org

6 CHAPTER 1. MUSIC ON THE COMPUTER WITH ABC 2

abcm2ps

abcm2ps typesets music in PostScript, which used to be the best option for printing on paper.
It also produces SVG output, but abc2svg is be�er at that.

abcm2ps can typeset �les containing thousands of tunes without even a hiccup, and it’s
incredibly fast. It gives the user full control of page layout and output options; many Abc
applications use abcm2ps internally to display the music. Unfortunately, abcm2ps is no longer
being developed, as its author is concentrating on abc2svg; new Abc features will not be
implemented. In its current state, though, abcm2ps is a very capable scorewriter.

If you want to manage big tune collections, or if you need precise page layout customisa-
tion, or if you use a program that runs abcm2ps internally, then abcm2ps is the best program
for you.

abc2svg

abc2svg typesets music in SVG/HTML, which is meant to be displayed in web pages. Output
can also be converted to PDF.

abc2svg can be integrated in web-based Abc editors that make it very easy to use. In
addition to displaying the score, web-based abc2svg can also play the music and highlight the
notes being played. abc2svg is updated frequently, and includes the latestAbc improvements
and extensions.

�e main disadvantage of abc2svg is its lack of �ne control on PDF output. Printing,
in fact, is delegated to external tools, which may produce slightly di�erent PDF �les. Fur-
thermore, when it is integrated in browser-based editors abc2svg cannot handle large tune
collections, which can make it very slow or even hang it completely.

If you are a beginner, or if you need to display music in web pages, or if you want to use
the latest Abc features, then abc2svg is the best program for you.

abcMIDI

�e abcMIDI suite focuses on MIDI output, and it also performs manipulations such as trans-
position and reforma�ing. Like abcm2ps, many Abc applications use abc2midi internally to
play the music.

You will need abcMIDI programs if you want MIDI output.

Abc/MusicXML Translators

�e Abc/MusicXML translators are the bridge between Abc and other music applications.
�ese tools are essential if you want to typeset and play Abc music with MusicXML-

enabled programs. Some of these are renowned professional applications, like Sibelius® and
Finale®, which may produce be�er output than abcm2ps/abc2svg and abc2midi. In addi-
tion, the Abc/MusicXML translators provide useful extensions to Abc such as tablatures and
percussion notes.

Unfortunately, the conversion from/to MusicXML and Abc cannot be perfect, and some
features may be lost. In particular, Abc tune collections cannot be converted as a single �le,
because the MusicXML �le format has currently no notion of tune collection.

Use the Abc/MusicXML translators if you want to insert Abc music in MusicXML appli-
cations, or if you want to use Abc extensions.

1.2. GETTING STARTED 7

TradMusician

TradMusician is a complete Abc player and viewer for Android that also manages tune col-
lections. It lets the user browse and select tunes, display them in standard notation, and play
them at adjustable speed.

TradMusician is free and available on Google Play; it’s probably the best choice for the
Android platform.

Other Programs

As already explained, there are many other Abc applications. A number of them, like the
aforementioned EasyABC, use abcm2ps and abc2midi internally to display and play the
music. �ese applications are quite popular and are very easy to use, but there’s a catch.

Users o�en ignore or forget that the real work is done under the hood by abcm2ps and
abc2midi, possibly bundled with the application. O�en, these are old versions that should be
upgraded to �x errors and/or add new features. Further, the application that employs abcm-
2ps and abc2midi may introduce its own errors. If you use such an application, take all this
into account.

Please let me stress this point: the most reliable way to make music in Abc is by using the

latest versions of the command line programs, directly in the command line. It’s not di�cult:
command line usage will be explained in Section 1.2.5, page 9.

1.2.3 Abc in a Nutshell

Abc music is wri�en in text �les with extension .abc or .abp. �e extension is not obliga-
tory, but it’s highly recommended. Abc uses the characters you �nd on standard computer
keyboards to represent notes and symbols:

• characters like A B C a b c z represent notes and rests;

• accidentals, ties, slurs etc. are wri�en with characters like = - () and so on;

• expression symbols are notated with words called decorations, like !fff!, !fermata!,
!tenuto!, . . .

• the metre, clef, title, and other tune properties are wri�en in words called �elds, like
M:, K:, T:;

• low-level details (that is, forma�ing parameters or MIDI commands) are wri�en using
directives like %%titlefont or %%MIDI program 19.

In short: all musical features are wri�en with sequences of characters.
A musical piece, which is wri�en in an Abc �le, consists of two parts: a header and a

body. �e header contains information about the piece such as the title, author, key, etc.;
these pieces of information are wri�en in �elds. �e body of the piece contains the music.

An Abc �le may contain several pieces, divided by one or more blank lines. Each piece
has its own header and body. Some �elds and directives can also appear in the body of a piece;
others may be wri�en at the top of a �le, so they apply to all pieces. �e �le containing Abc
music is also called the source of the pieces.

8 CHAPTER 1. MUSIC ON THE COMPUTER WITH ABC 2

Strictly speaking, directives for low-level details are not part of the notation. In fact, Abc
was designed for a high-level description of musical pieces, with no special instructions for
typese�ing or playback. �at said, Abc 2 does provide directives for specifying such details;
these will be examined in Chapter 4 (page 59).

If you don’t have a US keyboard, some important characters may be missing. To obtain
these characters in Windows, turn the numeric keypad on, keep the Alt key pressed and type
some digits:

• Alt-126 to get the tilde ~ ;

• Alt-009 to get a tab character ;

• Alt-096 to get a grave accent ‘ .

• Alt-123 to get an open curly bracket { ;

• Alt-125 to get a closed curly bracket } ;

• Alt-091 to get an open square bracket [;

• Alt-092 to get a closed square bracket] .

GNU/Linux and macOS users will have to �nd out how to type these characters.

1.2.4 Our First Abc File

To get our feet wet, we are going to use abc2svg to write, display and play the C major scale.
�e recommended browser is Chromium (or derivatives such as Chrome), because it supports
a handy, multiplatform “Save as PDF” print option. Other browsers may work.

�ere’s a very important detail to stress before we begin. Whenever you write an Abc
�le, you’ll have to choose a �le name. Any �le name will do, but:

! Avoid mistakes!

do not use �le names containing spaces!

�at is: instead of, say, my music file.abc, you must use my music file.abc or My-
MusicFile.abc. �is is very important, because command line programs cannot easily use
�le names containing spaces. Besides, �le names containing spaces are not web-friendly ei-
ther.

You can use abc2svg online, visiting the page h�p://moinejf.free.fr/js/edit-1.xhtml, or
o�ine, using the portable abc2svg that you can download at the Abc 2 page. Start it the way
you prefer.

�e screen is split in two; the le�-hand side is a large text input area with a menu on the
top; the right-hand side is blank, apart from the “(void)” string. �is is the area where the
score will be displayed (Figure 1.1).

Click on the text input area and type (or copy and paste) this source verbatim:

http://moinejf.free.fr/js/edit-1.xhtml

1.2. GETTING STARTED 9

Figure 1.1: Writing a tune in a web browser using abc2svg.

X: 1 % start of header
K: C % scale: C major
C D E F G A B c | c d e f g a b c' |

When you are done, wait two seconds and you should see this score:

To save the source for later use, select File/Save file and input the �le name scale1.abc.
To listen to the tune, right click on the right-hand side and select Play/Tune from the popup
menu; notes will be highlighted as they are played.

To convert the music to PDF, open the browser menu and select Print…. From the follow-
ing dialog, change the Destination to Save as PDF, then click on Save and insert the name of
the PDF �le.

Now, let us make a mistake on purpose: insert the # character instead of the �rst bar | .
An error message will be printed in red near the menu; click on it and an explanation will be
displayed:

noname.abc:3:17 Error: Bad character '#'

Fix the error in the source, wait two seconds, and the error message will disappear.

1.2.5 Using the Command Line

Now we will use the command line interface to turn the C major scale to PDF and MIDI; I
assume that abcm2ps and abcMIDI are installed. �e command abctopdf, which is part of
abc2svg, will only be described for GNU/Linux and macOS.

Commands you must enter are printed in boldface. �e following paragraphs will pro-
vide operating-system speci�c details; explanations for all users will follow.

Windows

Start the cmd program. (Windows XP: from Start/Run. . . , insert cmd, then click on “Ok”. Win-
dows 7 and later: start the menu, then insert cmd in Search Programs and Files.)

A black window will pop up showing a line that reads something like:

C:\Users\Guido>_

Let’s check whether abcm2ps and abcMIDI were installed correctly. Type the following:

10 CHAPTER 1. MUSIC ON THE COMPUTER WITH ABC 2

C:\Users\Guido>abcm2ps -V
abcm2ps-8.14.12 (2021-07-14)

Options: A4_FORMAT PANGO

Default format directory: /usr/share/abcm2ps

C:\Users\Guido>abc2midi -ver
4.61 October 11 2021 abc2midi

C:\Users\Guido>_

If you don’t see the above output messages, there’s an installation problem you will have
to �x; please refer to the programs’ documentation. Otherwise, you can proceed.

�e �rst time, and only the �rst time you use the command prompt, type this command:

C:\Users\Guido>md abcmusic

and press the Enter key. �is command creates a directory (that is, a “folder”), called abc-

music, where we will save our Abc �les. Now, let’s enter the directory:

C:\Users\Guido>cd abcmusic
C:\Users\Guido\abcmusic>_

�is command is equivalent to a double click on the folder icon. Note that the command
prompt changed to con�rm that you’ve moved to that folder. Always move to the abcmusic
folder before writing tunes.

Let’s now run the notepad editor. In our example, we’ll use the �le name scale1.abc.

C:\Users\Guido\abcmusic>notepad scale1.abc

Clic on “Yes” to create a new �le, then copy this source verbatim:

X: 1 % start of header
K: C % scale: C major
C D E F G A B c | c d e f g a b c' |

Save it, then switch back to the command prompt.
We are ready to make the PostScript output using abcm2ps:

C:\Users\Guido\abcmusic>abcm2ps -c -O= scale1.abc
abcm2ps-8.14.12 (2021-07-14)

File scale1.abc

Output written on scale1.ps (1 page, 1 title, 20236 bytes)

C:\Users\Guido\abcmusic>_

A bit of explanation may be helpful. -c -O= are options that tell abcm2ps to perform
automatic line breaks and to give the PostScript output �le the same name as the input �le,
but with a .ps extension.

To display the PostScript output, launch Sumatra and open the scale1.ps �le that you’ll
�nd in C:\Users\YOURNAME\abcmusic. �e score will look like this:

1.2. GETTING STARTED 11

To convert the score to PDF, select File/Save As. . . from Sumatra’s menu, then select PDF
documents in Save as Type.

Now, let us make a mistake on purpose: insert the # character instead of the �rst bar | .
Save and try to convert; you will get this error message:

C:\Users\user\abcmusic>abcm2ps -c -O= scale1.abc
abcm2ps-8.14.12 (2021-07-14)

File scale1.abc

scale1.abc:3:16: error: Bad character

3 C D E F G A B c # c d e f g a b c' |
ˆ

Output written on scale1.ps (1 page, 1 title, 20214 bytes)

C:\Users\user\abcmusic>_

Fix the error in the source, save it and convert it again. Finally, let’s make a MIDI �le:

C:\Users\user\abcmusic>abc2midi scale1.abc
4.61 October 11 2021 abc2midi

Warning in line-char 2-0 : No M: in header, using default

writing MIDI file scale11.mid

C:\Users\user\abcmusic>_

Double click on the MIDI �le to listen to it.

GNU/Linux, macOS

Open a terminal window (Ubuntu:Applications/Accessories; Mac OS X:Applications/Utilities).
Let’s check whether abcm2ps and abcMIDI were installed correctly. Type the following:

$ abcm2ps -V
abcm2ps-8.14.12 (2021-07-14)

Options: A4_FORMAT PANGO

Default format directory: /usr/share/abcm2ps

$ abc2midi -ver
4.61 October 11 2021 abc2midi

$ _

If you don’t see the above output messages, there’s an installation problem you will have
to �x; please refer to the programs’ documentation. Otherwise, you can proceed.

�e �rst time, and only the �rst time you use the command prompt, type this command:

$ mkdir abcmusic

and press theEnter key. �is command creates a directory (that is, a “folder”), called abcmusic,
where we will save our Abc �les. Now, let’s enter the directory:

˜$ cd abcmusic
˜/abcmusic$ _

12 CHAPTER 1. MUSIC ON THE COMPUTER WITH ABC 2

�is command is equivalent to a double click on the folder icon. �e command prompt
should change to con�rm that you’ve moved to that folder. Always move to the abcmusic

folder before writing tunes.
Now let’s start an editor. In GNU/Linux systems, the default editor should be one of the

following: xed, gedit, pluma, kate, mousepad, leafpad. If it is not, please �nd out. In ma-
cOS, the default editor is TextEdit; from Preferences, select Plain Text in the Format section.
�e �le name we are about to create is scale1.abc.

˜/abcmusic$ xed scale1.abc &

Don’t forget the ampersand & at the end of the line. Copy this source verbatim:

X: 1 % start of header
K: C % scale: C major
C D E F G A B c | c d e f g a b c' |

Save it, then switch back to the command prompt. We are ready to make the PostScript
output using abcm2ps:

˜/abcmusic$ abcm2ps -c -O= scale1.abc
abcm2ps-8.14.12 (2021-07-14)

File scale1.abc

Output written on scale1.ps (1 page, 1 title, 20236 bytes)

˜/abcmusic$ _

A bit of explanation may be helpful. -c -O= are options that tell abcm2ps to perform
automatic line breaks and to give the PostScript output �le the same name as the input �le,
but with a .ps extension.

To display the PostScript output, GNU/Linux users have a wide choice of viewers; use
xdg-open if you’re in doubt. macOS has a Preview utility that will automatically open scale1.ps

and convert it into PDF format; in the command line, use open.

˜/abcmusic$ xdg-open scale1.ps &

�e score will look like this:

Finally, to convert the �le into PDF type this command:

˜/abcmusic$ ps2pdf scale1.ps
˜/abcmusic$ _

�e �le scale1.pdf will be silently created.
Now, let us make a mistake on purpose: insert the # character instead of the �rst bar | .

Save and try to convert; you will get this error message:

1.2. GETTING STARTED 13

˜/abcmusic$ abcm2ps -c -O= scale1.abc
abcm2ps-8.14.12 (2021-07-14)

File scale1.abc

scale1.abc:3:16: error: Bad character

3 C D E F G A B c # c d e f g a b c' |
ˆ

Output written on scale1.ps (1 page, 1 title, 20214 bytes)

˜/abcmusic$ _

Fix the error in the source, save it and convert it again. Finally, let’s make a MIDI �le:

˜/abcmusic$ abc2midi scale1.abc
4.61 October 11 2021 abc2midi

Warning in line-char 2-0 : No M: in header, using default

writing MIDI file scale11.mid

˜/abcmusic$ _

Double click on the MIDI �le to listen to it.

Android (expert users only!)

To use Abc so�ware on Android, you will have to install a terminal emulator beforehand;
please refer to the instructions available at the Abc 2 home page. Don’t forget to install a text
editor too.

Android users will follow almost the same procedure as GNU/Linux users. �e di�erence
is the lack of Ghostscript for the Android platform: you will have to use SVG output instead.
By the way, this is a viable solution for all users, not only Android users.

Once your Abc source is ready, use this command line:

˜/abcmusic$ abcm2ps -c -O= -X scale1.abc
abcm2ps-8.14.12 (2021-07-14)

File scale1.abc

Output written on scale1.xhtml (1 page, 1 title, 5160 bytes)

˜/abcmusic$ _

Note the -X switch: it tells abcm2ps to produce SVG output embedded in a �le called
scale1.xhtml. To view this �le, just open it with a web browser.

Finally, let’s make a MIDI �le:

˜/abcmusic$ abc2midi scale1.abc
4.61 October 11 2021 abc2midi

Warning in line-char 2-0 : No M: in header, using default

writing MIDI file scale11.mid

˜/abcmusic$ _

Tap on the MIDI �le to listen to it; you may have to install additional so�ware.

14 CHAPTER 1. MUSIC ON THE COMPUTER WITH ABC 2

Explanations, for everybody

We started our session by running the two programs. In particular, abcm2ps reported its
version number, release date, supported options, and default format directory. A4 FORMAT
means that the European A4 paper format is supported; PANGO, when present, means that
abcm2ps employs the external Pango library (h�p://www.pango.org) for the rendering of
text; the default format directory may contain additional �les that contain forma�ing pa-
rameters (see Section 4.1.2, page 62).

Let’s now examine the source thoroughly:

X: 1 % start of header
K: C % scale: C major
C D E F G A B c | c d e f g a b c' |

It starts with two header �elds: X:, index, and K:, key; both upper-case. �ese are the
only obligatory �elds. X: is always followed by a number, which is used to identify the tunes
wri�en in a �le. �e % character begins a comment; everything that follows % till the end
of the line is ignored.

Fields may contain spaces. X:1 and X: 1 are equivalent. However, �eld lines must not
begin with spaces, and spaces are not allowed between the �eld le�er and the : character.

�e K: �eld speci�es the tune key; C stands for “C major”. In many countries, notes are
wri�en as “do (ut) re mi fa sol la si (ti)”; if you live in such a country, you may want to consult
Table 1.1 that compares notes wri�en in English and in Latin notation.

English note C D E F G A B
Latin note Do Re Mi Fa Sol La Si

Table 1.1: Note names in English and Latin notation.

�e X: �eld must be the �rst in the header, while the K: �eld must be the last. Other �elds
may be inserted in any order between X: and K:.

�e next line in the source starts the body of the tune, containing the notes. Upper-case
le�ers correspond to the central octave, while lower-case le�ers one octave higher. �e |
character inserts a measure bar, which can be entered at any position. �at is, you may write
measures of variable length, more than or less than the value speci�ed by the metre.

�e last c is followed by a single quote, which denotes an octave higher. Note that abcm-
2ps, by default, automatically set the metre as four quarters, and the note length as eighths.

It wasn’t di�cult, was it? We are now ready to study all the details that will enable us to
typeset beautiful scores.

Homework time. Try and write some Abc �les as an exercise. Type random notes if you
wish, but get used to writing, saving, converting, and viewing tunes. I strongly suggest that
you do your exercises at the end of each of the following sections.

If you use “do re mi. . . ”, the main hurdle is ge�ing used to “C D E. . . ” A trick I used was
memorizing the notes as “doC”, “reD”, “miE”, “faF”, “solG”, “laA”, “siB” and the reverse.

� � � � �

http://www.pango.org

Chapter 2

Melody

2.1 Notes and Symbols

This part of the manual deals with basic characteristics of notes: pitch, length, accidentals,
dots, ties, slurs, tuplets, chords, grace notes, and expression symbols. But before we

begin, we have an important topic to examine.

2.1.1 Manual or Automatic Formatting?

How should we write the music? Should we take care of the exact number of measures in
each line of music, or should we leave this job to the scorewriter? To some extent, the answer
to these questions depends on the type of music we want to write.

In the case of simple tunes of �xed length, 16 or 32 bars for instance, the best option is
probablymanual forma�ing; speci�cally, writing four measures per line. Most traditional mu-
sic (jigs, reels, bourrées, etc.) may look be�er when typeset with manual forma�ing. Besides,
some programs like TradMusician only support manual forma�ing.

For longer pieces such as choral or classical music, the best option is usually automatic

forma�ing: we write as many measures per line as we prefer, then abcm2ps or abc2svg

rearrange them for optimal output. A�er all, a scorewriter is a specialised piece of so�ware
that knows how to place music elements optimally on the page. As a ma�er of fact, this is the
way we work with word processors (or LATEX, in my case): we let the program rearrange text
lines automatically. Inserting every line break manually would be a pointless waste of time.

In this manual, we will use automatic forma�ing. All scores will be typeset using abc2svg
and automatic line breaks, unless otherwise speci�ed.

2.1.2 Note Pitch: A-G a-g ,’

�e following source (scale2.abc) shows how to obtain notes under and above the sta�,
i.e. notes that sit on ledger lines; the scale is C major. Instead of just writing K:C as in the
previous example, we’ll add a small bit of code which will be further explained in Section 2.2.1
(page 24).

K:C treble, besides specifying the C major scale, forces the treble clef. In this example it
must be speci�ed because there are several notes much below the sta�; abcm2ps or abc2svg
would set the bass clef by default. Also, note that each note is separated by a space, but there
is no space between notes and commas or single quotes. Finally, note that the last measure
is not complete (it lacks four eight notes); this is not a problem.

15

16 CHAPTER 2. MELODY

If you use abcm2ps, convert the source without the -c option:

X: 1
K: C treble
% C major, four octaves:
C, D, E, F, G, A, B, C | C D E F G A B c |
c d e f g a b c' | c' e' g' c'' |

�e rule is: if a note is followed by one or more commas, it goes down one or more octaves;
if it is followed by one or more single quotes, it goes up one or more octaves. Experts will
notice some resemblance to the Helmholtz pitch notation, shi�ed two octaves upwards.

It is important to note that we wrote two lines of Abc notes, which produced two lines of
music. �is is one of the basic rules of the Abc notation; a new line in the source starts a new

line in the score. However, automatic line breaks may be preferable. In the above example, for
instance, note spacing is too wide; a single line would probably look be�er.

We can instruct abcm2ps and abc2svg to typeset the score with automatic forma�ing.
�is is done inserting the following line:

%%linebreak <none>

at the top of the source. �is line is one of the many directives available that let us �ne-tune
the appearance of the score; we will study them in Chapter 4, page 59.

Converting the new source:

%%linebreak <none>
X: 1
K: C treble
% C major, four octaves:
C, D, E, F, G, A, B, C | C D E F G A B c |
c d e f g a b c' | c' e' g' c'' |

we obtain this score:

which looks a bit compressed, but is de�nitely be�er than before.
�e bass clef is automatically set when we start a piece of music with low notes (F, and

below). �e treble clef is then automatically set for higher notes. Let’s remove the treble

indication in the K: �eld:

2.1. NOTES AND SYMBOLS 17

%%linebreak <none>
X: 1
L: 1/8
K: C
%
C,, D,, E,, F,, G,, A,, B,, C, | C, D, E, F, G, A, B, C|
C D E F G A B c | c d e f g a b c' |

To sum up, these are the note names in the bass and treble clef:

...

A,,, B,,, C,, D,, E,, F,, G,, A,, B,, C, D, E, F, G, A, B, C

C D E F G A B

c d e f g a b c d' e'

...

c''

...

2.1.3 Note Length: L:

Unless otherwise indicated, note length is automatically set depending on the tune metre.
�e rule is: if the value of the metre is greater than or equal to 0.75, that is 3/4, the de-

fault note length will be one eighth; if the metre is less than 3/4, the note length will be one
sixteenth. For example, when the metre is 4/4 the value is 1 (4 divided by 4 is 1), so the note
length will be one eighth; if the metre is 3/4 = 0.75, again one eighth; if the metre is 2/4 = 0.5,
the note length will be one sixteenth. By default, the metre is 4/4 and the note length is one
eighth.

�e L: �eld is used to modify the default note length, specifying a value as in L:1/4. (To
change the metre, we use the M: �eld; see Section 2.2.2, page 28.)

To double, triple etc. the length of a note, we write the number 2, 3, etc. immediately a�er
the note. To divide the value of a note by 2, 4 etc., we write /2, /4, /8. . . or, equivalently, /,
//, ///. . . Spaces between the note and the digit or the slash are not allowed.

X: 1
L: 1/4
K: C
% 16/4 8/4 4/4 2/4 2/4 1/4 1/4 1/4 1/8 1/8
C16 | C8 | C4 | D2 D2 | E0 E E F/ F/|

% 3/4 1/16 1/16 1/32 1/32 1/64 1/64 1/64 1/64
G3 G// G/4 G/8 G/8 G/16 G/16 G/16 G/16|

18 CHAPTER 2. MELODY

Note that abcm2ps and abc2svg support notes that are longer than a whole note! �e �rst
note in the above example is called a longa, and its length is four whole notes. �e second
note is a brevis, equal to two whole notes. �e spacing between notes is proportional to their
length. (We shall see in Section 4.1 (page 59) how to make the spacing of notes constant
instead of proportional.)

Another weird note is the �rst E in measure 5. �e trailing 0 denotes a stemless quarter
note, which is sometimes found in early music.

Spaces between notes and measure bars can be freely inserted when the notes are longer
than one eighth, and are used to improve the legibility of the source. But spaces between notes
that are equal or lesser than one eighth are not optional. If these notes are not separated by
spaces, they will be grouped under a beam:

X: 1
K: C
%
C D E F CD EF | C D E F C/D/E/F/ G/A/B/c/ |
c/B/A/G/ F/E/D/C/ CC/C/ C z |

Commonly, notes are beamed “by beat”: each group of eigth (or less) notes corresponds
to a beat in the measure. Unbeamed notes may be used in vocal music; see Section 2.2.4, page
30.

2.1.4 Rests and Spacing: z Z x y

Rests are indicated by the character z (lowercase zed). �e same rules for note length also
apply to rests, which can also be longer than a whole rest.

To notate multi-measure rests, we use Z (uppercase zed) followed by the number of
measures we want to skip:

X: 1
L: 1/4
K: C
Z12 | z16 | z8 | z4 | C2 z2 | C z C z |
C z/ z/ C z//z//z///z///z///z////z//// |

12

2.1. NOTES AND SYMBOLS 19

�e characters x and y denote, respectively, invisible rests and additional spacing:

X: 1
L: 1/4
K: C
C D E/E/E/E/ F/F/F/F/ | C D E/E/E/yyE/ F/yF/yF/yF/ yyyy | xxxG |

�e y character can be followed by a width in points; default is 20 points. �is unit of
measurement is widely used in typography; a “point” (PostScript point) is 0.353 mm.

Invisible rests are o�en used for transcribing piano music; examples will be shown in
Section 3.1.2 (page 49).

2.1.5 Accidentals: ^ =

Sharp] is denoted by a caret ^ before the note, �at [by an underscore and natural \ by an
equal sign = . Spaces between the accidental and the note are not allowed. Double accidentals
are indicated doubling the special character: double sharp by ^^ and double �at by :

X: 1
L: 1/4
K: C
C ^C D ^D | E F ^F G | ^G A ^A B | c^c=cz |
c B _B A | _A G _G F | E _E D _D | C_C=Cz |
C ^^C __C z |

�arter tone accidentals (microtones) are also available. �at is, 1/4 and 3/4 sharps and
�ats can be obtained adding / a�er the caret or the underscore, while 3/4 are obtained adding
3/2:

X: 1
L: 1/8
K: C
G ^/G ^G ^3/2G A4 | A _/A _A _3/2A G4 | G3 ^G A4 | A3 _A G4 |]

2.1.6 Dotted Notes: < >

Notes followed by a dot are typeset in two ways. First, by specifying the right length:

20 CHAPTER 2. MELODY

X: 1
L: 1/4
K: C
C3 D | E3/2 F//G// A B | c3/2 B//A// G>F | E D C z |
C C3/2 C7/4 C15/8 |

Please note the three last do�ed notes: we speci�ed 3/2, 7/4, and 15/8 to obtain one,

two, or three dots. Admi�edly, this notation is not very handy, but isolated do�ed notes are
not very common. More o�en, one note is do�ed and the following is halved; or vice versa.
In this case, we are talking of broken rhythm. It is obtained using the characters > or <
between two notes.

When we use > , the �rst note is do�ed (that is, its duration increases by half) and the
following note is halved. �e opposite with < . To indicate a note followed by two or three
dots, use >> or >>> .

X: 1
L: 1/4
K: C
CEGc | C > E G >> c | C < E G < c | C/>E/ C/ > E/ C/<E/ C/ < E/ |

2.1.7 Ties, Slurs, Staccato: - () .

A tie is obtained with the character - (hyphen) between two notes of equal pitch; the tie
should be placed immediately a�er the �rst note. Slurs are notated enclosing the notes in
parentheses. Finally, the staccato mark is obtained by pu�ing a dot before the note. Spaces
between these symbols and the notes are not allowed.

X: 1
L: 1/4
K: C
.C/ .C/ D- D .E/ .E/ | EF-FG | (C/E/G/c/) (c/G/E/C/-) | C2 z2 |]

! Avoid mistakes!

Although ties and slurs are graphically very similar, they have a completely di�erent
musical meaning. Do not use ties to connect notes of di�erent pitch: MIDI output (see

2.1. NOTES AND SYMBOLS 21

Section 7.1, page 105) would be wrong!

Dashed slurs and ties are indicated by a dot before the open parentheses or hyphen char-
acter. Further, the slur and tie direction may be speci�ed adding a ’ (above) or , (below)
before the open parenthesis:

X: 1
L: 1/4
K: C
.C/ .C/ D.- D .E/ .E/ | EF-'FG | .('C/E/G/c/) .(c/G/E/C/-) | C2 z2 |]

2.1.8 Tuplets: (n

Triplets, quadruplets, etc. are coded with an open le� parenthesis, immediately followed by
the number of notes, then by the notes.

More precisely, the notation is:

• (2: 2 notes in the time of 3

• (3: 3 notes in the time of 2

• (4: 4 notes in the time of 3

• (5: 5 notes in the time of 〈n〉 (see below)

• (6: 6 notes in the time of 2

• (7: 7 notes in the time of 〈n〉

• (8: 8 notes in the time of 3

• (9: 9 notes in the time of 〈n〉

�e notes in a tuplet must have the same length. If the tune metre is compound, that is
6/8, 9/8, 12/8 etc., 〈n〉 is 3; otherwise, it is 2.

More complex tuplets are coded using the extended notation (〈n〉:〈t〉:〈x〉, which means:
put 〈n〉 notes into the time of 〈t〉 for the next 〈x〉 notes. �e �rst parameter is the number
printed over the tuplet. Extended tuplets are used to include notes of di�erent lengths in a
tuplet.

If the second parameter is omi�ed, the syntax is equivalent to that of simple tuplets. If
the third parameter is omi�ed, it is assumed to be equal to the �rst. To make things more
interesting, nested tuplets are also possible. In fact, one of the notes can be replaced by a
tuplet:

22 CHAPTER 2. MELODY

X: 1
L: 1/8
K: C
(3cde e2 | (6cegczg (3czg |
(3:2:2G4c2 | (3:2:4G2A2Bc | (3:2:6(3GGGA2Bc |]

3 6 3

3 3 3
3

To �ne-grain the printing of tuplet indications, please see Section 4.1.16 (page 79).

Z Warning

abcMIDI and the Abc/MusicXML translators do not support nested tuplets.

2.1.9 Chords: []

Chords are wri�en enclosing notes in square brackets; spaces between brackets and notes are
not allowed. A chord behaves as a single note when it comes to adding dots, slurs, etc. �at
is, a chord can be preceded by a dot for staccato, or by a symbol, and so on. �e same holds
for chord length: instead of specifying the length of each note in the chord, we can simply
add a number a�er the closing bracket.

X: 1
L: 1/4
K: C
CE [C2G] c | .[CEGc] ([C/E/G/c/][E/G/c/e/]) [C2D2G2c2] |
[CEGc] > [CEGc] [CEGc] > [CEGc]| [C2-E2-G2-][CEG]2 |

Note the chord in the �rst measure. While abcm2ps and abc2svg typeset chords contain-
ing unequal notes as they are, abcMIDI extends shorter notes to match the longer ones.

! Avoid mistakes!

Do not mistake chords for something completely di�erent! If you want to obtain some-
thing like this:

you should be aware that these are not chords, but di�erent voices on the same sta�.
Voices will be the subject of Section 3.1 (page 45).

2.1. NOTES AND SYMBOLS 23

2.1.10 Grace Notes: ~ {}
�e ~ (tilde) character denotes a generic gracing. Its meaning and method of execution de-
pend on the player’s interpretation. For instance, a �ddler may play a roll or a cut.

To notate grace notes, one or more notes are enclosed in curly brackets before the main
note. To add a slash to a grace note (acciaccatura), the open curly bracket is followed by / ,
then by a single note. Grace notes can also be wri�en without tying them to a note.

A grace note length can also be speci�ed. (Music theorists need not apply. . . .) �e grace
note length does not depend on L:; it is always 1/8 for a single grace note, 1/16 for two or
more, and 1/32 in bagpipe tunes. (Yup, abcm2ps and abc2svg support keys and directives for
Great Highland Bagpipe music.)

Chords can also be speci�ed instead of a single grace note. However, abc2midi can’t play
these “grace chords” correctly.

X: 1
L: 1/4
K: C
~c2 {/d}c {c2d2}c | {d/c/d/}c {ede}c {fef}c c |
c/{[ceg][gc]}c/c/c/ c/c/{gfedc}c/c/ | c2 c {cBAGFED}C |

To remove the slur joining grace notes to the main note, we use the -G option of abcm2ps,
or a forma�ing parameter that we’ll see later on. (For the curious: %%graceslurs.)

2.1.11 Inline Fields

When one wants to change metre or other music properties, a new �eld is entered on a line
on its own. However, there’s another method that avoids spli�ing the music into lines: inline
�elds.

Inline �elds are inserted enclosing a �eld in square brackets, with no leading and trailing
spaces. Inline �elds are used in this example to change the note length:

X: 1
L: 1/4
K: C
CDEF | GABc | [r:this is a remark][K:D][L:1/8] DEFG ABcd |

�e new r: �eld, as you might have guessed, is used to include remarks within the music.

24 CHAPTER 2. MELODY

2.2 Music Properties

2.2.1 Key signatures and Clefs: K:

So far, we have wri�en our examples in treble clef and C major scale. �e K: �eld may be
used to alter both the key signature and the clef.

Key Signatures

K: must be followed by a note name in upper case, followed by m or min when the mode
is minor. Accidentals are wri�en as # for] and b for [; e.g. Bb, or F#m. When there are no
accidentals, the keyword none may also be used.

I remind you the simple rule to �nd out the major key in accordance with the number of
sharps or �ats: one tone higher than the last sharp note, or one fourth below the last �at note.

Peculiar key signatures are K:HP and K:Hp, which are used for Great Highland Bagpipe
music. K:Hp marks the sta� with F], C] and G\; both key signatures force note beams to go
downwards.

Western classical music only uses major and minor modes, but other modes exist that
are still used in other musical traditions. A case in point is Irish traditional music, which
widely employs modal scales. I am not going to explain what they are; su�ce it to say that
you may come across strange key signatures such as AMix or EDor, that is “A Mixolydian”
and “E Dorian”. Table 2.1 lists them all.

Accidental Major Minor Mixolydian Dorian Phrygian Lydian Locrian

(Ionian) (Aeolian)

7 sharps C# A#m G#Mix D#Dor E#Phr F#Lyd B#Loc

6 sharps F# D#m C#Mix G#Dor A#Phr BLyd E#Loc

5 sharps B G#m F#Mix C#Dor D#Phr ELyd A#Loc

4 sharps E C#m BMix F#Dor G#Phr ALyd D#Loc

3 sharps A F#m EMix BDor C#Phr DLyd G#Loc

2 sharps D Bm AMix EDor F#Phr GLyd C#Loc

1 sharp G Em DMix ADor BPhr CLyd F#Loc

none C Am GMix DDor EPhr FLyd BLoc

1 �at F Dm CMix GDor APhr BbLyd ELoc

2 �ats Bb Gm FMix CDor DPhr EbLyd ALoc

3 �ats Eb Cm BbMix FDor GPhr AbLyd DLoc

4 �ats Ab Fm EbMix BbDor CPhr DbLyd GLoc

5 �ats Db Bbm AbMix EbDor FPhr GbLyd CLoc

6 �ats Gb Ebm DbMix AbDor BbPhr CbLyd FLoc

7 �ats Cb Abm GbMix DbDor EbPhr FbLyd BbLoc

Table 2.1: Modal scales.

Explicit accidentals can also be speci�ed by appending them to the key signature. For
example, K:D exp =c ^g would set the key of D major but mark every C as natural, and
every G as sharp. (�e keyword exp may be omi�ed, but since abc2midi needs it, don’t leave
it out if you need MIDI output.) Lower case le�ers must be used, separated by spaces. When
present, explicit accidentals always override the accidentals in the key signature.

�e keyword none, meaning “no accidentals”, can also be used; e.g. K:G none.

2.2. MUSIC PROPERTIES 25

Since many people don’t have formal music training, I suggest that a comment be added
a�er the K: �eld to indicate the number of accidentals: K:AMix % 2 sharps

Clefs

As we saw in Section 2.1.2 (page 15), the clef is automatically set by abcm2ps and abc2svg

depending on the notes pitch. For example, if we start a tune with notes much below the sta�
(notes with commas), abcm2ps or abc2svg will select the bass clef. However, we can set the
clef with the K: �eld at the start of the tune; we can also opt to have no clef at all. �is is
accomplished with key modi�ers.

�e complete syntax of the K: �eld is:
K: 〈key〉 [clef=〈clef type〉] [line number] [octave=〈number〉] [transpose=〈number〉] [+8] [-8]

[ˆ8] [8] [sta�ines=〈number〉] [sta�scale=〈number〉] [cue=〈on/o�〉]

Parameters in 〈angular brackets〉 are required, while those in [square brackets] are op-
tional. Brackets must be le� out when writing a parameter!

�e only required parameter is the key speci�ed a�er the K: �eld. All others are optional:

• [clef=] may be omi�ed before the clef type when it is not none;

• 〈clef type〉 can be:

– the Abc name of a note: G or g (treble clef), C or c (alto clef), F or f (bass
clef) are allowed. �e speci�ed note will be positioned on the relevant line, as
explained below;

– a clef name: treble, alto, tenor, bass;
– the keyword none indicates that there is no clef;
– the keyword perc (or, equivalently, the le�er P) indicates a clef for percussion

instruments.

• [line number] indicates the sta� line on which the clef is drawn;

• [octave=〈number〉] transposes the music by 〈number〉 octaves;

• [transpose=〈number〉] (or [t=〈number〉]) transposes playback;

• [+8] and [-8] print 8 above or below the clef;

• [ˆ8] and [8] print 8 above or below the clef, and perform octave transposition;

• [sta�ines=〈number〉] sets the number of lines of the associated sta�;

• [sta�scale=〈number〉] sets the sta� scale. Default is 1, maximum value is 3, minimum is
0.5;

• [cue=〈on/o�〉] sets the music scale to 0.7 (on) or 1.0 (o�). �e sta� scale is unchanged.

To sum up, available clefs and their respective �elds are listed in Table 2.2 and in the
following example (the w: lines will be explained in Section 2.2.4):

26 CHAPTER 2. MELODY

Clef Field

Treble K:treble (default)
Treble, 1 octave below K:treble-8

Treble, 1 octave above K:treble+8

Bass K:bass

Baritone K:bass3

Tenor K:alto4

Alto K:alto

Mezzosoprano K:alto2

Soprano K:alto1

no clef K:clef=none

percussions K:perc

Table 2.2: Clefs and associated K: �elds.

X: 1
L: 1/4
K: C clef=none
CEGc | [K:C treble] CEGc | [K:Cm bass]C,E,G,C |
w: none | treble | bass |
[K:C bass3]C,E,G,C | [K:Cm alto4]CEGc | [K:C alto]CEGc |
w: baritone | tenor | alto |
[K:Cm alto2]CEGc | [K:C alto1]CEGc | [K:perc] cdef |]
w: mezzosoprano | soprano | percussions |

none treble bass baritone tenor

alto mezzosoprano soprano percussions

Note the di�erence between the +8/-8 and ^/ 8 in clefs indications. �e la�er prints 8
above or below the clef, and also transposes the notes one octave lower or higher:

X: 1
L: 1/4
K: C
[K:C treble+8] CEGc | [K:C treble-8] CEGc |
w: +octave\ indication | \-octave\ indication |
[K:C treble^8] CEGc | [K:C treble_8] CEGc |
w: +octave\ and\ transposition * | \-octave\ and\ transposition * |

+octave indication -octave indication +octave and transposition -octave and transposition

2.2. MUSIC PROPERTIES 27

�e \ characters in the example above are used to insert the next character literally,
avoiding its special meaning; for example, \- will not produce a new syllable. (More details
in Section 2.2.4, page 30.)

�e following example shows how the very same notes can be set in di�erent clefs using
the octave= option:

X: 1
L: 1/4
K: C treble
%
CDEF|GABc||
K:C clef=bass octave=-2
CDEF|GABc||
K:C clef=alto octave=-1
CDEF|GABc||
K:C clef=G octave=1
CDEF|GABc||

Changing the Clef: I:clef

When we want to change the clef but not the key signature, we can use a shortcut. Instead
of writing:

K:C clef=bass

we can write the following �eld:

I:clef bass

which can also used inline. Note that we did not write = . Clefs types are the ones listed in
Table 2.2 (page 26).

Bass and Alto Clefs Compatibility Issues

Old versions of abcm2ps dealt with notes in bass and alto clefs in a peculiar way. abcm2ps
could automatically transpose the music one or two octaves; besides, in bass clef the two
notes c and C, could be equivalent, depending on the context.

�is was quite confusing, and fortunately this method is now disallowed. However, prob-
lems may occur when we come across �les that were wri�en for the old methond. We could
see that some notes are typeset one or two octaves higher than expected.

�ere are two recommended ways to deal with these �les:

• manually transpose every note to the right octave, i.e. change c to C,;

28 CHAPTER 2. MELODY

• add a clef speci�er and/or an octave modi�er to the K: �eld.

�e �rst option is formally more correct; the second one is more practical.
�e most common case is given by notes wri�en for the bass clef that are typeset two

octaves higher. Fix them by changing:

K: C clef=bass

to:

K: C clef=bass octave=-2

�e same method can be used to transpose music for a di�erent clef. For instance, let’s
suppose we wanted to transpose some music from the treble to the alto clef; that is, we
transpose music from violin to viola. We can do that by changing the K: �eld, from

K:D

to:

K:D clef=alto octave=-1

2.2.2 Time Signature: M:

�e M: �eld speci�es the tune time signature (metre) in di�erent ways:

• as a fraction, i.e. M:4/4 or M:3/4. Complex indications can be used, such as M:5/4

(2/4+3/4) or M:7/8 (3+2+2). No spaces are allowed between digits and the + char-
acter;

• as an integer value: M:2;

• as a textual indication: M:C or M:C| denote the metre of 4/4 and cut time (“alla breve”).
Ancient metre indications are also supported: M:o (perfect minor), M:o. (perfect major),
M:c (imperfect minor), M:c. (imperfect major);

• as an explicit measure duration: M:C|=2/1;

• if there is no metre, use M:none.

Needless to say, the metre can change in the middle of a tune. In this case, we insert an
inline M: �eld in the body:

X: 1
M: C
K: C
L: 1/4
C D E F | [M: 3/4] G A B | [M: 2/4] c c |

2.2. MUSIC PROPERTIES 29

[M:7/8 (3+2+2/8)] [L:1/8] CDE FG AB | c2 z4 z |

�e recommended order of �elds related to note length is M:, L:, and Q:.

2.2.3 Bars, Repeats, Endings: | / : []

In addition to the basic measure bar, others types of bars can be obtained using combinations
of these characters: | , . , [,] , and : .

X: 1
L: 1/4
K: C
CDEF .| GFED [| CDEF |: GFED :|CDEF :: GFED ||
CDEF [|] GFED CDEF |[| GFED :::|] CDEF : GFED |]

Note that [|] doesn’t typeset anything: it is an invisible bar, and it can be used as a

placeholder for a decoration. �e same can be accomplished using []. Also, note that : is the
same as .|.

To indicate that a section has two (or more) di�erent endings, use the symbols [1, [2, . . .
as in the following example. When repeats symbols are close to a bar, they can be shortened
using |1, |2, . . . �e end of the last repeat is set with ||, or |] if at the end of the tune.

X: 1
L: 1/4
K: C
|: C D E F | G F E D |[1 C2 G2 :|2 C2 C2|| c3 z |]

1 2

abcm2ps and abc2svg also support other types of repeats. Not only digits, but also dots,
commas, hyphen signs and text in double quotes can be used:

X: 1
L: 1/4
K: C
|: C D E F |1-3 c d e f :|4,5 C2 G2 :|["last time" C G C z |]

30 CHAPTER 2. MELODY

1-3 4,5 last time

Most commonly, the start repeat bar |: is le� out. �is is not a problem in printed music,
but abcMIDI is a bit more restrictive and expects to �nd it. In Section 2.2.11 (page 40) we will
see how to include |: in the source, but hide it in printed output.

Z Warning

Unfortunately, repeats are one of the features that make abcm2ps/abc2svg and abc-

MIDI not compatible with each other. In the la�er,

• to repeat a run of notes three times, |:: ::|will not work. A simple workaround
is: |:|1-3 notes :|.

• text indications in repeat bars (as "last time" above) are not recognised.

2.2.4 Lyrics: W: w:

Lyrics can be added at the end of the tune, or aligned with the notes under the sta�. In the
�rst case, at the end of the body we add lines that start with the W: (upper case) �eld, followed
by the lyrics.

b Note

abcm2ps typesets W: lines le�-aligned under the music, while abc2svg typesets them
centred.

If stanzas are separated by an empty W: line, i.e. not followed by any words, they are
automatically arranged in columns so as to take up less space. Stanzas may also be numbered,
as in the following example:

X:1
K:C
%
W: 1. This is the first column
W: la la la la la
W: 2. First column again
W: la la la la la
W: % an empty W: line starts a new column
W: 3. This is the second column
W: la la la la la
W: 4. Second column again
W: la la la la la
W: % last stanza is centred
W: 5. Final column, centred
W: la la la la la

2.2. MUSIC PROPERTIES 31

1. This is the first column 3. This is the second column
la la la la la la la la la la

2. First column again 4. Second column again
la la la la la la la la la la

5. Final column, centred
la la la la la

As shown by the source above, anAbc tune may also consist of W: lines only, even without
notes to provide the melody! As long as we provide X: and K:, in fact, a tune is de�ned.

Note-aligned lyrics are obviously more complex to write. Immediately a�er a line of mu-
sic, we write one or more lines that start with the w: (lower case) �eld, followed by the lyrics
split in syllables. Obviously, rests are not matched by lyrics.

Alignment rules between notes and syllables are:

• the - character (hyphen) separates syllables of a word. If it is separated from the
previous syllable by a space, a note is skipped. 〈n〉 - characters separated from the
previous syllable skip 〈n〉 notes. Spaces a�er the - have no e�ect, and can be used to
improve legibility;

• | skips to the next measure;

• (underscore) the last syllable is sung for an extra note, and a horizontal line is drawn;

• * skips a note (insert * to typeset a literal * character);

• ~ (tilde) joins two syllables under a note;

• \- inserts a - character.

If a w: line grows too long, it can be broken and continued on the following line, which
must begin with the + �eld. �ese two lines will match the notes on the previous melody line.

! Avoid mistakes!

Previous versions of Abc allowed to continue a lyrics line using \ followed by another
w: line. Although abcm2ps still supports this syntax, its use is deprecated: please use
+ instead!

�e following tune is “Happy Birthday” with Italian lyrics:

X: 1
K: F
C> C | D2C2F2 | E2-E z C> C | D2C2G2 | F2-F z C> C |
w: tan- ti~au- gu- ri a te,_ tan- ti~au- gu- ri a te,
+: * tan- ti~au-
c2A2F2 | E2D z B> B | A2F2G2 | F6 |]
w: gu- ri fe- li- ci, tan- ti~au- gu- ri a te!
%
W: Tanti auguri a te, tanti auguri a te,
W: tanti auguri felici, tanti auguri a te!

32 CHAPTER 2. MELODY

tan ti au gu ri a te, tan ti au gu ri a te, tan ti au gu ri fe li ci, tan ti au gu ri a te!

Tanti auguri a te, tanti auguri a te,
tanti auguri felici, tanti auguri a te!

Note that 8th and 16th notes are not beamed; this is common practice when the notes are
sung in di�erent syllables.

Beware of the di�erence between - (hyphen) and (underscore). Usually, - is used to
skip syllables within a word, while is used at the end of a word. Let’s see a Gregorian chant
example, the Kyrie from Missa de Angelis:

X: 1
L: 1/8
K: D
%
z D FGA A2 BAG A2 dBAG AB A2 AFED GFE E D2|
w: Ky-ri --e, __________ * e ----- le-i-son.

Ky ri e, * e le i son.

If a w: line begins with digits, these will not be aligned with the notes but moved a bit to
the le�; this feature is used to enumerate subsequent w: lines. �e digit must be followed by
one or more ~ characters and joined with the following syllable. If we want to align digits
with notes (i.e. for �ngerings), all we have to do is insert a ~ character just before the digit.

X: 1
L: 1/4
K: C
CDEF | GABc | c2z2 | z4 |
w: 1.~~~do re mi fa sol la si do doooo
w: ~1 ~2 ~3 ~4 |||

1. do re mi fa sol la si do doooo

 1 2 3 4
Take special care to write a number of syllables that matches the number of notes! Mis-

match between notes and syllables is one of the most common causes of error. Besides, please
bear in mind that lyrics may alter the spacing between notes. �is e�ect is especially pro-
nounced when a whole word, or a very long syllable, is forced under a note.

2.2.5 Title, Composer, Tempo: T: C: Q:

Our scores still miss a few details. In the next example we introduce the T: (title, subtitle),
C: (composer) and Q: (tempo) �elds:

2.2. MUSIC PROPERTIES 33

X: 1
T: Happy Birthday To You % title
T: (Good Morning To All) % subtitle
C: Patty Hill, Mildred J. Hill % composer
M: 3/4
Q: "Allegro " 1/4 = 120 % tempo
K: F
C>C | D2C2F2 | E4 C>C | D2C2G2 | F4 C>C |
w: Hap-py birth-day to you, Hap-py birth-day to you, hap-py
c2A2F2 | (E2D2) _B>B | A2F2G2 | F6 |]
w: birth-day dear fel-low, hap-py birth-day to you!

Happy Birthday To You
(Good Morning To All)

Patty Hill, Mildred J. Hill

Allegro = 120
Hap py birth day to you, Hap py birth day to

you, hap py birth day dear fel low, hap py birth day to you!

�e text indication in the Q: �eld (“Allegro” in our example) may be omi�ed. Besides, Q:
also accepts references to previous tempo indications, as in Q: 3/8 = 1/4.

In Section 4.1 (page 59) we will learn how to change the title fonts.

2.2.6 Text and Foreign Characters

Writing titles or lyrics in English is straightforward, but if we want to write text in Euro-
pean languages like Italian, German, Hungarian etc., we will need weird characters that don’t
appear on most keyboards. How can you type “Crêuza de mä”? �e problem is even more
complicated if we want to write lyrics in non-latin alphabets, such as Russian or Greek for
instance.

Many characters of foreign languages can be inserted by using special character sequences
that begin with a backslash \ , followed by a special character, then followed by the charac-
ter to be modi�ed. For example, to get the “e circum�ex” character ê we type \^e; to get the
“a umlaut”character ä we type \"a. �ese peculiar strings are called backslash sequences,
and are listed in Table 2.3. Note the di�erence between the acute ’ (ASCII 39) and grave ‘

(ASCII 96) accents.
Typing accented le�ers using backslash sequences is the best option if you don’t need

other foreign characters. Besides, yourAbc source will be encoded in 7–bit pure ASCII, which
is guaranteed to be readable by every digital device on the planet.

However, there are many more foreign characters you might need, not to mention whole
foreign alphabets. In this case, you will need to write your sources using a character encoding
called UTF-8. Simply put, UTF-8 is a computer standard that makes all possible characters
and symbols available to applications.

34 CHAPTER 2. MELODY

Accent Special character Followed by

grave \` AEIOUaeiou
acute \' AEIOUYaeiouySZszRLCNrlcn
circum�ex \^ AEIOUaeiouHJhjCGScgs
cedilla \, CcSsTtRLGrlgNKnk
umlaut \" AEIOUYaeiouy
tilde \~ ANOanoIiUu
ring \o AaUu
macron/stroke \= ADEHIOTUadehiotu
slash \/ OoDdLl
ogonek \; AEIUaeiu
caron \v LSTZlstzCEDNRcednr
breve \u AaEeGgIiOoUu
long Hungarian umlaut \: OUou
dot \. ZzIiCcGgEe
ligatures \ae \oe \ss \ng n/a

Table 2.3: How to obtain characters of foreign languages.

UTF-8 is fully supported by abcm2ps (with Pango support), abc2svg, and the Abc/Music-
XML translators. If you’re sure that your text editor saves its �les in UTF-8 encoding, you
can use accented le�ers and symbols freely; possibly, by copy & paste.

2.2.7 UTF-8 Characters and Symbols

�e site h�p://www.utf8-chartable.de lists all UTF-8 characters, grouped in many different
blocks. Each character is identi�ed by a number called Unicode code point; for example, the
code of character © in block Basic Latin (U+0000–U+007F) is U+00A9.

When compiled with Pango support, abcm2ps can typeset all UTF-8 characters. �ere are
three ways to insert UTF-8 characters in an Abc source:

1. directly, possibly pasting it from a web page. I suggest that you use the virtual key-
boards at h�p://www.typeit.org/.

2. using the Javascript syntax: replace the leading U+ with \u, followed by the character
code (case insensitive). For example, character U+00A9 can be entered as \u00A9. �is
method is limited to the �rst 65535 (U+FFFF) UTF-8 characters.

3. using the XML character entity reference, or XML syntax for short: replace the leading
U+ with &#x, followed by the character code (case insensitive), then by a semicolon ; .
For example, character U+00A9 can be entered as ©

Copying and pasting UTF-8 characters in the source is the best method; if you can’t, you
should use the XML syntax:

X: 1
T: XML Characters
K: C

http://www.utf8-chartable.de
http://www.typeit.org/

2.2. MUSIC PROPERTIES 35

%
W: A few strange characters in XML:
W: Ace of hearts: 🂱 (U+1F0B1)
W: G clef: 𝄞 (U+1D11E)
W: Porrectus: 𝇙 (U+1D1D9)
W: Aleph: א (U+05D0)
W: Omega: Ω (U+03A9)
W: Question mark as UTF-8: \u003f (U+003F)

XML Characters

A few strange characters in XML:
Ace of hearts: 🂱 (U+1F0B1)
G clef: 𝄞 (U+1D11E)
Porrectus: 𝇙 (U+1D1D9)
Aleph: א (U+05D0)
Omega: Ω (U+03A9)
Question mark as UTF-8: ? (U+003F)

If your version of abcm2ps lacks Pango support, in addition to backslash sequences you
can also use octal codes. In fact, abcm2ps recognises a set of octal codes in the form \nnn,
where nnn are three digits. Inserting an octal code in the source we get the corresponding
character; codes are listed below. For the curious: these are a subset of the Basic Latin block
(U+0000–U+007F), with 5 musical symbols thrown in. Octal codes, however, are not recog-
nised by abc2svg and by the Abc/MusicXML translators; more precisely, abc2svg only ac-
cepts codes \201 to \205.
\201: \202: \203: \204: \205:
\241: ¡ \242: ¢ \243: £ \244: ¤ \245: ¥
\246: ¦ \247: § \250: ¨ \251: © \252: ª
\253: « \254: ¬ \256: ® \257: ¯ \260: °
\261: ± \262: ² \263: ³ \264: ´ \265: µ
\266: ¶ \267: · \270: ¸ \271: ¹ \272: º
\273: » \274: ¼ \275: ½ \276: ¾ \277: ¿
\300: À \301: Á \302: Â \303: Ã \304: Ä
\305: Å \306: Æ \307: Ç \310: È \311: É
\312: Ê \313: Ë \314: Ì \315: Í \316: Î
\317: Ï \320: Ð \321: Ñ \322: Ò \323: Ó
\324: Ô \325: Õ \326: Ö \327: × \330: Ø
\331: Ù \332: Ú \333: Û \334: Ü \335: Ý
\336: Þ \337: ß \340: à \341: á \342: â
\343: ã \344: ä \345: å \346: æ \347: ç
\350: è \351: é \352: ê \353: ë \354: ì
\355: í \356: î \357: ï \360: ð \361: ñ
\362: ò \363: ó \364: ô \365: õ \366: ö
\367: ÷ \370: ø \371: ù \372: ú \373: û
\374: ü \375: ý \376: þ \377: ÿ

Special characters and symbols can obviously be used in all string instances (titles, com-
poser name, annotations, etc.) as we will see in the following sections.

36 CHAPTER 2. MELODY

b Note

Nowadays the UTF-8 standard is ubiquitous, but a few years ago other encodings were
quite common. In particular, many European languages employed the Latin ISO-8859
encoding, and several Abc �les available for download are encoded with it. �ese �les
should be converted to UTF-8 to be displayed and converted correctly.
�e online converter at h�ps://www.charset.org/utf8-to-latin-converter lets you con-
vert from/to ISO-8859-1 and UTF-8. Advanced users will want to use the iconv

command-line program. �is command converts a �le encoded in ISO-8859-1 to its
equivalent encoded in UTF-8:

$ iconv -f ISO_8859-1 -t UTF-8 file_8859.abc > file_utf.abc

2.2.8 Parts: P:

Some tunes are made of di�erent parts, possibly repeated in several ways. To specify the
order in which parts are played, we use the P: �eld. In the header, this �eld speci�es the
order in which parts should be played; in the body, it marks the beginning of each part.

Part names must be uppercase single le�ers, A . . . Z .

X: 1
T: Song in three parts
L: 1/4
P: AABBC % or: P: A2.B2.C
K: C
[P: A] C D E F | C D E F | G G G G | G2 z2 ||
[P: B] C E G c | C E G c | c c c c | c2 Cz ||
[P: C] C/E/G/c/ C2 | C/E/G/c/ C2 | C4 |]

Song in three parts
AABBC

A B C

Note that when the P: �eld is used in the header, the part name may be followed by a

number indicating the number of repeats. �us, P:A3 is the same as P:AAA; P:(AB)3C2 is
equivalent to P:ABABABCC. To make the text more readable, dots may be used to separate the
parts.

�ere you are a more complex example: P:((AB)3.(CD)3)2 is equivalent to P:ABAB-

ABCDCDCDABABABCDCDCD. Try and count carefully!

! Avoid mistakes!

P: �elds cannot be inserted within repeats (i.e. |:. . .:|), because abc2midi gets con-
fused and produces wrong MIDI output.

https://www.charset.org/utf8-to-latin-converter

2.2. MUSIC PROPERTIES 37

Type Meaning

m or min minor
maj major (also ∆)
dim diminished (◦)
+ or aug augmented (+)
sus suspended
7, 9, . . . seventh, ninth, etc.

Table 2.4: Types of accompaniment chords.

2.2.9 Accompaniment Chords: ""

In many songbooks, accompaniment chords (say, for the guitar) are notated as “A”, “C7”,
“Dm”, “F]” etc. above the sta�. �ese chords are notated in Abc by writing the chord name
between double quotes " immediately before the note, using this format:
〈note〉 [accidental] [type] [/bass note]

�e note is A . . . G (uppercase only), the accidental is indicated with # for], b for [,
or = for natural; the chord type is one of those listed in Table 2.4. A slash / followed by a
note A . . . G denotes either an optional bass note, or a chord inversion. Spaces between the
chord and the following note are not allowed. Chord inversion and optional bass notes are
rendered by abc2midi; please refer to Section 7.1.10 (page 111) for explanations.

X: 1
T: Happy Birthday with chords
M: 3/4
Q: "Allegro" 1/4 = 120 % tempo
K: F
C> C | "F"D2C2F2 | "C"E3 z C> C | "C"D2C2G2 | "F"F3 z C> C |
w: Hap-py birth-day to you, Hap-py birth-day to you, hap-py
"F"c2A2F2 | "Bb"E2D z B> B | "F"A2F2"C"G2 | "F"F6 |]
w: birth-day dear fel-low, hap-py birth-day to you!

Happy Birthday with chords
Allegro = 120

Hap py birth day to you, Hap py birth day to

F C C

you, hap py birth day dear fel low, hap py birth day to you!

F F B♭ F C F

! Avoid mistakes!

If you need to write accompaniment chords using notes with Italian names, i.e. "Sol7"
instead of "G7", don’t write them this way.Abc requires that only notes in English nota-
tion be used; programs for translating sources into MIDI �les conform to this standard.

38 CHAPTER 2. MELODY

However, there’s a way to typeset accompaniment chords using Italian notes: please
refer to Section 8.5 (page 127).

Multiple chords per note are possible. �ey can be notated writing two or more consec-
utive chords before the same note, or using the character ; to separate the chords:

X: 1
L: 1/4
K: C
"C""G"CCCC | "G""G7"GGGG | "C;C7"CCCC |]

G G7 C7
C G C

2.2.10 Text Annotations: "^ <>@"

Text annotations can be added in di�erent ways. �e �rst method is to write the annotation
as an accompaniment chord, enclosing the text between double quotes but preceding it by
a special character. Another method is to use the Q: �eld, which can be inserted to specify
tempo changes.

Text annotations must begin with one of these special characters: ^ <>@ . �ese char-
acters set the logical di�erence between an annotation and an accompaniment chord, and
specify the position of the annotation:

• ^ above the sta�;

• below the sta�;

• < to the le� of the note;

• > to the right of the note;

• @ must be followed by two numbers X and Y, separated by a comma and optionally
followed by a space. �e annotation will be typeset with the origin at the centre of the
note head (the lowest note, if in a chord), with an o�set of X horizontal and Y vertical
points.

When we use @ , it is useful to know that the distance between sta� lines is 5 pt.
To include accidentals in text annotations, use \#, \b, and \=; note the leading \ . Multiple

annotations are notated like multiple chords, as seen in Section 2.2.9 (page 37).
Let’s see an example that uses all methods:

X: 1
Q: "Dolcemente" 1/4=60
L: 1/4
K: C
"_below"CEG"^above"c |

2.2. MUSIC PROPERTIES 39

"<left"a'">right"A,"^around the note" "<(" ">)"A2 |
[Q: "sostenuto"] "_one" "_two" "_three" CEG"@-15,8.5 anywhere"c|

Dolcemente = 60 sostenuto

 above
left

right

)
anywhere

below one

(

two

around the note

three

! Avoid mistakes!

A common mistake is writing text annotations leaving out one of the ^ <>@ charac-
ters. �is “annotation” will be misinterpreted as an accompaniment chord, which will
be almost certainly malformed and will wreak havoc in both printed and MIDI output.

Courtesy Accidentals

Courtesy and editorial accidentals are simply a special case of text annotation; the only prob-
lem is how to insert the accidental we need.

Since accidentals and many more musical symbols are de�ned as UTF-8 characters, we
can insert them in XML syntax (see Section 2.2.7, page 34) if abcm2ps has Pango support. In
this case, we can use all musical characters de�ned in block U+1D100–U+1D1FF. Accidentals
codes are:

• ♯ for sharp;

• ♭ for �at;

• ♮ for natural;

• 𝄪 for double sharp;

• 𝄫 for double �at.

We can also use a simpler notation that works even without Pango support:

• strings "\b" "\#" "\=" typeset �at, sharp, and natural above the sta�. Other characters
in the string are not allowed;

• codes \001 \002 \003 \004 \005 typeset sharp, �at, natural, double sharp, and double
�at;

• codes \201–\205 are equivalent to \001–\005.

X: 1
M: none
L: 1/4

40 CHAPTER 2. MELODY

K: C
%
"\b"A "\#"A "\="A
"<(\001)"A "<(\002)"A "<(\003)"A "<(\004)"A "<(\005)"A|]

♭ ♯ ♮

(♯) (♭) (♮) (𝄪) (𝄫)

2.2.11 Decorations: !symbol!

Decorations, also known as “embellishments” or “ornaments”, are notated using the general
form !symbol!: the decoration name, like � , ppp, cresc.. . . , enclosed in exclamation marks.
Decorations are wri�en immediately before the note; two or more decorations per note are
possible. Most decorations can also be applied to grace notes, rests, invisible rests, and mea-
sure bars.

X: 1
L: 1/4
K: C
!p!GG!>!!f!GG!segno! | GG!trill!G2!coda!|G4!fine! |

Fine

As shown above, some symbols are typeset above the sta� by default, while others are
typeset under the sta�. Manual positioning is possible, as explained in Section 4.1.13 (page
76).

Supported decorations are listed in Figure 2.1. You may notice that some symbols you
need are missing. Don’t worry: new symbols can be easily added, as we will see in Chapter 8
(page 121).

Some symbols have synonims:

• !>!: !accent! or !emphasis!

• !+!: !plus!

• !mordent!: !lowermordent!

• !uppermordent!: !pralltriller!

• !<(! and !<)!: !crescendo(! !crescendo)!

• !>(! and !>)!: !diminuendo(! !diminuendo)!

• !rbstop!: !rbend!

While most symbols just typeset something over a note and are self-explanatory, some of
them act on multiple notes or other visual elements:

2.2. MUSIC PROPERTIES 41

Decorations on single notes

Da Coda

!dot! !roll! !fermata! !emphasis! !lowermordent!

!coda!
!dacoda! !uppermordent!

!segno! !trill! !upbow! !downbow! !gmark! !slide! !tenuto! !breath!

!longphrase! !mediumphrase! !shortphrase!
!invertedfermata!

!invertedturn! !invertedturnx!

!0! !1! !2! !3! !4! !5! !plus! !+!

D.C. al Coda D.C. al Fine Da Capo

!accent! !>! !marcato! !^! !D.C.! !D.C.alcoda! !D.C.alfine! !dacapo!

D.S. al Coda D.S. al Fine Fine

 !D.S.! !D.S.alcoda! !D.S.alfine! !fine!
!f! !ff! !fff! !ffff!

!mf! !mp!

!mordent! !open!
!p! !pp! !ppp! !pppp!

!pralltriller!

!sfz! !ped! !ped-up!
!turn! !wedge! !turnx! !snap! !invisible!

!thumb! !arpeggio! !/! !//! !///! !stemless!
Decorations on multiple notes

!crescendo(! !crescendo)! !<(! !<)! !diminuendo(! !diminuendo)! !>(! !>)!

8va

8va

!-(! !-)! !~(! !~)!

!8va(!
!8va)!

!8vb(!
!8vb)! !trill(! !trill)!

!trem1! !trem2! !trem3! !trem4! !beambr1! !beambr2!

!beam-accel! !beam-rall!

!beamon!
!rbstop!

1-2

Figure 2.1: Standard decorations.

42 CHAPTER 2. MELODY

• symbols that include an open parenthesis (in their de�nition start a multi-note dec-
oration, which is ended by the respective symbol with a closed parenthesis) . For
example, !<(! starts a crescendo hairpin, !<)! ends it. �e same holds for !>(!, !>)!,
and their long-name counterparts;

• !beambr1! and !beambr2! act on notes connected by beams, leaving only 1 or 2 beams;

• !beamon! prevents a beam from being broken across measures;

• !rbstop! stops a repeat bracket;

• !invisible! makes the next note or measure bar invisible;

• �nally, !xstem! is used in piano music, and it will be explained in Section 4.1.11 (page
73).

�e following tune shows a three-times repeat with a hidden start repeat bar:

X: 1
L: 1/4
K: C
GGGG !invisible!|: |1-3 CDEF |G!rbstop!ABc:|

 1-3

Piano symbols for “o�ava alta” and “o�ava bassa” indications automatically transpose the
typeset notes one octave lower or higher:

X: 1
L: 1/4
M: C
K: C
%
CEGc | !8va(! CEGc !8va)! |
cGEC | !8vb(! cGEC !8vb)! |

 8va

8va

2.2.12 Symbol Lines: s:

If the tune contains many chords and decorations, an alternative notation may be handy to
improve legibility. A�er a line of music, we write a line that starts with the s: �eld. �is line
will contain only symbols.

Rules for matching notes and symbols are the same as those explained in Section 2.2.4
(page 30). s: lines and note-linked symbols can be used at the same time.

2.2. MUSIC PROPERTIES 43

X: 1
L: 1/4
K: C
C/D/ E/F/ G/A/ B/c/ | c/B/ A/G/ F/E/ D/C/ | e2!fermata!c2 | z4 |]
s: !>! !>! * !ff! !p! !mp! * !ff! !>! !>! !>! !ff! * * * !ff! |

Figured Bass

Some symbols of �gured bass notation can be wri�en using s: lines, containing text anno-
tations instead of symbols:

X: 1
M: none
L: 1/4
K: C bass
C,4 C,4 C,4 C,4 C,4 C,4 C,4 C,4 C,4]
s: "_6;4" "_\001" "_\0026;\002" "_6+" "_6-" "_-" "_\\6" "_/6" "_6 4"

6 ♯ ♭6 6+ 6- - \6 /6 6 4
4 ♭

As you can see, all annotations have a leading (underscore) to typeset them below the
sta�.

2.2.13 Rede�nable Symbols: U:

Most symbol names are quite verbose, and they could make the source di�cult to read. To
solve this snag, we can de�ne a shortcut using the U: �eld.

�e U: �eld is followed by a single le�er (~ , A–Z, a–z), followed by = , then by the
symbol to be shortened. For example, the following U: �elds de�ne shortcuts for !trill!,
!fermata!, !tenuto!:

U: T = !trill!
U: H = !fermata!
U: t = !tenuto!

To reset the de�nition of a U: �eld, we use a de�nition like:

U: T = !nil!
U: H = !nil!
U: t = !nil!

Le�ers H L M O P S T u v are prede�ned abbreviations for common symbols:

44 CHAPTER 2. MELODY

= !roll!

H = !fermata!

L = !accent! or !emphasis!
M = !lowermordent!

O = !coda!

P = !uppermordent!

S = !segno!

T = !trill!

u = !upbow!

v = !downbow!

� � � � �

Chapter 3

Harmony

3.1 Polyphony in Abc 2

In previous sections we dealt with simple melodies, i.e. music wri�en for a single voice or
instrument. �is is what old version 1.6 of Abc could do, and it is actually a lot; many folk

musicians do not need anything more.
We now turn our a�ention to Abc 2 and its extensions for polyphonic music, using choral

and piano pieces for our examples.

3.1.1 Voices and Systems: V:

Let’s review a bit of music theory. �ere can be one or more lines of music on a sta�; that is,
one or more voices. Voices belong to one or more instruments, some of which have a single
voice (e.g. woodwinds) or more than one (piano, organ). A set of staves related to instruments
that play together in a piece is called a system.

abcm2ps allows to typeset music for up to 32 voices, but this limitation can be easily
overcome modifying and recompiling the program sources. �e number of voices that abc-
2svg can handle only depends on available memory. At most four voices can be typeset on
the same sta�.

We will begin by writing a piece for two voices on two staves. �e V: �eld, followed by a
voice name, indicates that the following music belongs to that voice. �e voice name can be
a number or a string (e.g. “Tenor”). �e V: �eld can be wri�en on a line by itself, or enclosed
in square brackets at the start of a note line.

X: 1
T: Brother John
C: Traditional
L: 1/4
K: F
M: 4/4
V:1
FGAF | FGAF | ABcz | ABcz | c/d/c/B/ AF | c/d/c/B/ AF |
V:2
z4 | z4 | FGAF | FGAF | ABcz | ABcz |
V:1
GCFz |GCFz | z4 | z4 |
V:2

45

46 CHAPTER 3. HARMONY

c/d/c/B/ AF | c/d/c/B/ AF | GCFz | GCFz|

Brother John
Traditional

�is score was wri�en alternating the lines of voices 1 and 2, as in real sheet music. We
could write all of the music of voice 1, then all of voice 2: the resulting score would be typeset
correctly, but the source would be much less readable.

b Note

When writing multiple voices:

• the P: �eld must be indicated in the top voice only;

• slurs and decorations on multiple notes must start and stop in the same voice.

We can add optional voice speci�ers to the V: �eld to set voice properties. �e list of
available voice speci�ers depends on the application, which is free to implement its own;
further, applications can silently ignore speci�ers they don’t implement.

abcm2ps supports auto, down, dyn=, gchord=, gstem=, lyrics=, merge, name=, nm=,
scale=, sname=, snm=, stafflines=, cmdsta�scale=, stem=, and up.

abc2svg supports clef=, clefpitch=, cue=, instrument=, map=, name=, nm=, octave=,
pos=, scale=, score=, shift=, sname=, snm=, sound=, stafflines=, staffnonote=, staff-
scale=, stem=, subname=, and transpose=.

For the moment, let’s examine only a few voice speci�ers; more will be explained further
on.

• clef=〈clef type〉 speci�es the voice clef; clefs are the same we examined in Sec-
tion 2.2.1 (page 24);

• cue=〈on〉 or 〈o�〉 sets the current voice as “cue” (i.e. a voice for hints, which are typeset
smaller than other voices) or normal voice;

• down forces note stems downwards;

• dyn=〈up〉, 〈down〉 or 〈auto〉 forces the placement of dynamics decorations;

3.1. POLYPHONY IN ABC 2 47

• gchord=〈up〉 or 〈down〉 forces the placement of accompaniment chords;

• gstem=〈up〉, 〈down〉 or 〈auto〉 forces the grace note stem direction;

• lyrics=〈up〉, 〈down〉 or 〈auto〉 forces the placement of lyrics lines;

• merge indicates that this voice belongs to the same sta� as the previous voice;

• name=〈name〉 or nm=〈name〉 speci�es the name that appears at the le� of the �rst sta�;

• pos=〈type〉 〈position〉 sets the position of music elements (more information in Sec-
tion 4.1.13, page 76);

• scale=〈n〉 sets the scale of the voice. Default is 1, maximum value is 2, minimum is
0.5;

• sname=〈name〉 or snm=〈name〉 speci�es the name that appears at the le� of all the
staves a�er the �rst one;

• stafflines=〈n〉 sets the number of lines of the associated sta�;

• staffnonote=〈n〉: hides the sta� associated to the voice (more information in Sec-
tion 4.1.12, page 73);

• staffscale=〈n〉 sets the scale of the voice and the associated sta�. Default is 1, maxi-
mum value is 3, minimum is 0.5;

• stem= 〈up〉, 〈down〉, or 〈auto〉 forces the note stem direction;

• up forces note stems upwards.

Here is the same tune with some improvements:

X: 1
T: Brother John
C: Traditional
L: 1/4
V: 1 clef=treble name="Soprano" sname="S"
V: 2 clef=treble name="Contralto" sname="C"
K: F
%
[V:1] FGAF | FGAF | ABcz | ABcz | c/d/c/B/ AF | c/d/c/B/ AF |
[V:2] z4 | z4 | FGAF | FGAF | ABcz | ABcz |
%
[V:1] GCFz | GCFz | z4 | z4 |
[V:2] c/d/c/B/ AF| c/d/c/B/ AF | GCFz | GCFz |

48 CHAPTER 3. HARMONY

Brother John
Traditional

Soprano

Contralto

S

C

V: can also de�ne the properties of many voices at once. V:*, wri�en in the tune header
and followed by voice parameters, sets the properties of all voices in the tune; parameters
can be rede�ned by successive V: �elds. To write the same notes to several voices at once,
we can specify the voices in the same V: �eld, separated by commas:

X: 1
M: 4/4
L: 1/4
V: * clef=bass % applies to all voices
K: C
%
V: 1 clef=alto % overrides previous setting
V: 1,2,3 % specify 3 identical voices
C, D, E, F, | G, A, B, C ||

Fancy staves can be obtained using staffscale and stafflines. Percussion notes are

notated using sharps for x-shaped note heads, and �ats for circle-x-shaped note heads:

X: 1
T: Special Staves
M: 4/4
L: 1/4
V: 1 stafflines=6 staffscale=0.7
V: 2 stafflines=4 scale=1.2
V: 3 stafflines=1 staffscale=1.4 perc
K: C

3.1. POLYPHONY IN ABC 2 49

%
[V:1] "^6 staff lines, staffscale=0.7"CDEF | GABc | cBAG | FEDC |
[V:2] "^4 staff lines, staffscale=1, scale=1.2"CCCC | GGGG | EEEE | G2z2 |
[V:3] "^1 staff line, staffscale=1.4"^c/^c/^c/^c/ _c/_c/_c/_c/| z4 | \

^c/^c/^c/^c/ _c/_c/_c/_c/ | cccc |

Special Staves

6 staff lines, staffscale=0.7

4 staff lines, staffscale=1, scale=1.2

1 staff line, staffscale=1.4

4
4

4
4

4
4

Z Warning

�e above score is typeset with abcm2ps, since percussion notes are not supported in
abc2svg. To be more precise, abc2svg implements percussion notes using an extension
called note mapping that will be explained in Section 8.3 (page 125).

3.1.2 Positioning Voices: %%score

A polyphonic piece is played by several instruments, which have one or two staves associated
to them. One or more voices belong to each sta�. To specify how voices and instruments are
laid out on the score, we use the %%score directive.

%%score must be followed by voice names, optionally enclosed by a pair of delimiters:
[], {}, and (). As other �elds in the header, %%score must appear before K:. In the tune
body, if there are voices that were not declared in the header, they will be ignored.

�e delimiters are used following these rules:

• when voices are not enclosed by any delimiter, they will be simply typeset on separate
staves. �e uppermost voice in the system will be the �rst voice in the list. For example:
%%score SATB

• when two or more voices are enclosed in square brackets, their staves will be joined
by a thick bracket. �is arrangement is o�en used for the choral part of a system. For
example: %%score [SATB]

• when two or more voices are enclosed in curly brackets, their staves will be joined by
a bracket. �is is typically used for the piano or organ part of a system. For example:
%%score {MS MD}

• if two or more voices are enclosed between parentheses, they will be typeset on the
same sta�. For example: %%score [(SA) (TB)]

50 CHAPTER 3. HARMONY

• to add measure bars that cross the staves, use the character | between voice names:
%%score [S|A|T|B]

When two voices are typeset on the same sta�, the stem direction indicates the �rst voice
(up) or the second (down).

In addition to %%score, voices and staves can also be speci�ed using the alternate directive
%%staves. �ese two directives use the same parameters, but measure bar indications work
the opposite way. For instance, %%staves [S A T B] is equivalent to %%score [S|A|T|B],
and it means that bar lines are drawn. As you can see, using %%score is more intuitive.

Here is an example of piano music. �ere are three voices, two of which are played with
the right hand. When one of these voices is silent, normal rests are replaced by invisible rests
we studied in Section 2.1.4 (page 18).

X: 1
T: Prelude
T: Op. 28, No. 7
C: Fryderyk Chopin
L: 1/4
M: 3/4
Q: "Andantino"
%%score (V1 V2) | V3
V: V1 clef=treble
V: V2 clef=treble
V: V3 clef=bass
K: Amaj
%
% 1 - 2
[V:V1] (!p!E | "_dolce"c/>d/ [DGB] [DGB] | [DGB]2) ([df] |
[V:V2] x | x3 | x3 |
[V:V3] z | "_con pedale"E,, [E,E] [E,E] | [E,E]2 z |
% 3 - 4
[V:V1] [^B/^d/]>[c/e/] [ca] [ca] | [ca]2) ([Ec] | % slur not ended!
[V:V2] x3 | x3 |
[V:V3] A, [A,E] [A,E] | [A,E]2 z |

Prelude
Op. 28, No. 7

Fryderyk Chopin

Andantino

dolce

con pedale

Let’s now try a more complex piece. �ese are the �rst four measures of Mozart’s famous
“Ave Verum Corpus”, for organ and SATB:

X: 1
T: Ave Verum Corpus

3.1. POLYPHONY IN ABC 2 51

C: W. A. Mozart
M: 4/4
L: 1/4
Q: "Adagio"
%%score [(S A) | (T B)] | {(MD1 MD2) | (MS1 MS2)}
V: S clef=treble name="Soprano" sname="S"
V: A clef=treble name="Alto" sname="A"
V: T clef=bass name="Tenore" sname="T"
V: B clef=bass name="Basso" sname="B"
V: MD1 clef=treble name="Organo"
V: MD2 clef=treble
V: MS1 clef=bass
V: MS2 clef=bass
K: D
%
% measures 1 - 4
%
[V: MD1] (DA,D[CE]) | ([DF]D[DF][EG]) | [FA][DF][Fd][DF] | A^G=GG |
[V: MD2] x4 | x4 | x4 | E4 |
[V: MS1] F,2F,A, | A,F,A,2- | A,4 | B,4 |
[V: MS2] D,4- | D,4- | D,4- | D,4 |
[V: B] z4 | z4 | D,2D,2 | D,2D,2 |
w: A- ve, A- ve,
[V: T] z4 | z4 | A,2A,2 | B,2B,2 |
[V: A] z4 | z4 | F2F2 | E2E2 |
[V: S] z4 | z4 | A2(dF) | (A^G)=G2 |
w: A- ve, * A - ve,

Ave Verum Corpus
W. A. Mozart

Adagio

Soprano
Alto

Tenore
Basso

Organo

A ve, A ve,

A ve, A ve,

Note that the voices were intentionally wri�en in reverse order, but %%score rearranged
them as expected. Normally, for clarity sake voices should be wri�en in the same order as
speci�ed in %%score.

Sometimes, a piece has a master voice and cue voices; the former is the main voice in the
piece, while cue voices are used, for instance, as hint for variations. %%score and %%staves

accept the symbol + before a voice name, which becomes the master voice. �e cue=on

option is then used to set the cue voice(s):

52 CHAPTER 3. HARMONY

X: 1
M: C
L: 1/4
K: C
%%score (1 +2)
V:1 cue=on
cdef | Z2 | g/f/e/d/ c2 |]
V:2
C4 | CEGc | cGEC | C4 |]

As a last example, let’s see a piece wri�en in an unusual manner: the “Kyrie” from Andrea

Gabrieli’s Missa Brevis. �is music has no metre, and each voice follows its own tempo: in
this case we use M:none. �e length of each measure is di�erent for each voice, consequently
the !longphrase! symbol replaces measure bars. We also want “cut time” tempo indicated.
�is is how the piece is wri�en:

X: 1
T: Missa Brevis
C: Andrea Gabrieli (1510? - 1586)
M: C|
L: 1/4
%%score [1 2 3 4]
V: 1 clef=treble
V: 2 clef=treble
V: 3 clef=treble-8
V: 4 clef=bass
U: L = !longphrase!
K: F
%
[P: Kyrie]
[V: 1] [M:none] F4 c2d2c2LG2 A2B2c2A2G2LF2 G2 c4 =B2 Lc4 z2 G2
w: Ky- ri - e e- lei ---son e- lei --son Ky-
[V: 2] [M:none] Lz8 C4 F2G2 FECD E2 F4 E2C2G2A2G2F2E2
w: Ky- ri - e * * e- lei --son e- lei ---
[V: 3] [M:none] z8 Lz8 F4 c2d2c2G2A2d2f2e2d2c2
w: Ky- ri - e e- lei -----
[V: 4] [M:none] z8 z8 Lz8 C,4 F,2G,2F,2LC,2 D,2E,2
w: Ky- ri - e e- lei -
%
[V: 1] c2d2c2LG2 A2B2A3 GAB c2 d4 c3 B/LA/ G4 A16 |]
w: ri - e e- lei -----------son.
[V: 2] A2 F4 E2F2D2 F4 F2 G3 F LF2 E2 F4 E2 F16 |]
w: ---son Ky- ri- e~e- lei -----son.
[V: 3] A3 =B Lc4 z2 G2c2d2c2LG2 A2_B2G2LA2 c4 c16 |]
w: son__ Ky- ri - e e- lei ----son.
[V: 4] LF,4 z2 C,2F,2G,2F,2LD,2 F,2E,2D,2LB,,2 C,8 F,16|]
w: son Ky- ri - e e- lei ----son.

3.1. POLYPHONY IN ABC 2 53

Missa Brevis
Andrea Gabrieli (1510? - 1586)

Kyrie

Ky ri e e lei son e lei son Ky ri

Ky ri e e lei son e lei

Ky ri e e lei son

Ky ri e e lei son

e e lei son.

son Ky ri e e lei son.

Ky ri e e lei son.

Ky ri e e lei son.

3.1.3 Typesetting Reductions

Just by changing the %%score directive, we can obtain reductions or part extractions from
the same source. In fact, %%score tells the scorewriter to typeset only the voices that are
speci�ed. We are free to omit voices in %%score, even if we wrote the corresponding music
lines.

�e next example is an excerpt from Händel’s “Giulio Cesare” that speci�es V: �elds for
two violins, a solo voice, and bass. We also write three pairs of T: and %%score lines, but keep
two of them commented out. Only the pair that is uncommented will typeset an additional
subtitle and will specify a score layout.

X: 1
T: Giulio Cesare in Egitto
T: Sesto: Svegliatevi nel core, furie d'un alma offesa (excerpt)
C: G.F. Händel
L: 1/8
M: C
T: Full score
%%score [V1 V2 Sesto Bassi]
% T: Vocal part and keyboard reduction
% %%score Sesto {V1 Bassi}

54 CHAPTER 3. HARMONY

% T: First violin only
% %%score V1
V: V1 clef=treble % name="Violino I"
V: V2 clef=treble % name="Violino II"
V: Sesto clef=treble % name=Sesto
V: Bassi clef=bass % name=Bassi
K: EbMaj
%
V:V1
z2 z G ce/d/ cc | cC e2-ed/e/ fA | AG z c !trill!c3/2=B//c// dG |
V:V2
z2 z G ce/d/ cc | cC e2-ed/e/ fA | AG z c !trill!c3/2=B//c// dG |
V:Sesto
z8 | z8 | z8 |
V:Bassi
C,2 z G, CE/D/ CC | CC, z G, A,F,B,B,, | E,E,, z C, E,C,G,E, |

Note that only these lines:

T: Full score
%%score [V1 V2 Sesto Bassi]

are uncommented. �e resulting full score is:
Giulio Cesare in Egitto

Sesto: Svegliatevi nel core, furie d'un alma offesa (excerpt)
Full score

G.F. Händel

If we change these lines:

% T: Full score
% %%score [V1 V2 Sesto Bassi]
% T: Vocal part and keyboard reduction
% %%score Sesto {V1 Bassi}
T: First violin only
%%score V1

then we tell the scorewriter to ignore all voices but V1. �e resulting score, predictably, will
contain only one sta�:

3.1. POLYPHONY IN ABC 2 55

Giulio Cesare in Egitto
Sesto: Svegliatevi nel core, furie d'un alma offesa (excerpt)

First violin only
G.F. Händel

Similarly, we could have obtained a solo voice and piano reduction leaving these lines
uncommented:

% T: Full score
% %%score [V1 V2 Sesto Bassi]
T: Vocal part and keyboard reduction
%%score Sesto {V1 Bassi}
% T: First violin only
% %%score V1

3.1.4 Voice Overlay: &

In some pieces of music, we occasionally need isolated notes (courtesy notes) or short runs
of notes belonging to a temporary extra voice. To avoid introducing an additional voice that
would be mostly void, we can use the & symbol that starts a new temporary voice called
overlay. �e notes that follow, up to the next bar line, belong to the overlay voice.

Up to four overlay voices may be added; each starts with an & . Unfortunately, there is
no way to control stem direction in overlay notes.

X:1
M:4/4
L:1/4
K:C
%
cdef & xxCD | gfed & EDCB, | c2G2 & C2x2 | c2 z2 & E2x2 & G2x2 |

�e above piece can be equivalently wri�en as:

X:2
M:4/4
L:1/4
K:C
%%score (1 2 3)
%
[V:1] cdef | gfed | c2G2 | c2 z2 |

56 CHAPTER 3. HARMONY

[V:2] xxCD | EDCB, | C2x2 | E2 x2 |
[V:3] x4 | x4 | x4 | G2 x2 |

which is more verbose.

3.1.5 Writing Clean Sources

Polyphonic scores can grow quite crowded: multiple systems, multiple voices, lyrics, symbol
lines, text annotations. It is important to maintain an Abc source clean and easy to read.

One of the main advantages of the Abc notation is its readability. A well wri�en Abc
source is easy to understand, debug, maintain, and extend. You will do yourself a favour if
try and keep your Abc sources as clean as possible.

You may want to follow these rules of thumb:

• write relatively short music lines (less than 80 characters, 66 would be optimal);

• write the voices in the same order as they would appear on paper;

• insert comments to indicate the measure numbers, and to explain complex passages if
needed;

• divide systems with a short comment line;

• bars within the same system should be aligned, if possible;

• use spacing to make bars stand out.

In general, the layout of the source should resemble that of the printed score as much as
possible. �e following source is a model you should follow.

X: 1
T: Son questi i crespi crini
C: Claudio Monteverdi (1567-1643)
M: C
L: 1/4
Q: "Andante mosso" 1/4 = 200
V: 1 clef=treble name="Soprano"sname="A"
V: 2 clef=treble name="Alto" sname="T"
V: 3 clef=bass name="Bass" sname="B"
U: i = !invisible!
K: Eb
%
% 1 - 4
%
[V: 1] i |: z4 | z4 | f2ec | _ddcc |
w: Son que-sti~i cre-spi cri-ni~e
[V: 2] i |: c2BG | AAGc | (F/G/A/B/)c=A| B2AA |
w: Son que-sti~i cre-spi cri-ni~e que ---- sto~il vi-so e
[V: 3] i | :z4 | F,2E,C, | _D,D,C,F, | (B,,/C,/_D,/E,/)F,F,|
w: Son que-sti~i cre-spi cri-ni~e que ---- sto~il
%
% 5 - 9

3.1. POLYPHONY IN ABC 2 57

%
[V: 1] cAB2 | cAAA | c3B | G2HGz :: e4 |
w: que-sto~il vi-so ond' io ri-man-go~uc-ci-so. Deh,
[V: 2] AAG2 | AFFF | A3F | =E2HEz:: c4 |
w: que-sto~il vi-so ond' io ri-man-go~uc-ci-so. Deh,
[V: 3] (A,G,/F,/E,2) | A,,_D,D,D, | A,,3B,, | C,2HC,z ::A,,4|
w: vi --- so ond' io ti-man-go~uc-ci-so. Deh,
%
% 10 - 12
%
[V: 1] f_dec | B2c2 | zAGF |
w: dim-me-lo ben mi-o, che que-sto
[V: 2] ABGA | G2AA | GF=EF |
w: dim-me-lo ben mi-o, che que-sto sol de-
[V: 3] _D,B,,C,>D, | E,2A,,F,, | =E,,F,,C,_D, |
w: dim-me-lo ben mi-o, che que-sto sol de-
%
% 13 - 15
%
[V: 1] =EFG2 |1 F2z2 :|2 F8 |]
w: sol de-si-o. _
[V: 2] (GF3/2=E//D//E)|1 F2z2 :|2 F8 |]
w: si ---- o. _
[V: 3] C,4 |1 F,,2z2 :|2 F,,8|]
w: si-o. _

� � � � �

58 CHAPTER 3. HARMONY

Chapter 4

Formatting

4.1 Formatting Parameters

We have learnt how to write music in Abc, from simple single-voice tunes to complex
polyphonic scores. In theory, we are done: in fact, the old Abc notation only describes

high-level musical elements, and it’s completely output-agnostic.
In practice, Abc 2 allows for the implementation of low-level details such as forma�ing

parameters, MIDI instruments, and also extensions like tablatures, chord diagrams, and much
more. �ese features are obtained writing lines that start with %%; these special lines are
known as pseudo-comments or directives. Since they start with % , directives can be treated
as comments by programs that don’t implement them.

We have already dealt with directives; for example, when we learnt %%linebreak or
%%score. �ere are several types of directives: some specify the page layout, others the fonts,
the spacing, many types of customisation, etc. We will see in Chapter 7 (page 105) that abc-
2midi provides its own directives for MIDI output.

Directives can be wri�en in the source, or in external Abc �les known as header �les, or
in external �les known as format �les. abcm2ps and abc2svg support over 160 directives; for
more details, please see Section A.5, page 165.

Unfortunately, at this point Abc applications start to become incompatible with one an-
other. In particular:

• abc2svg and abcm2ps share most directives, but some directives are speci�c to each
program;

• abc2svg and abcm2ps use di�erent fonts;

• �e Abc/MusicXML translators only support a small subset of the directives supported
by abc2svg, abcm2ps, and abcMIDI;

• other Abc applications may ignore directives altogether, or support their own.

As a result, this chapter is speci�c to abc2svg and, in some cases, to abcm2ps. Useful
directives that are supported by other programs will be described in the following chapters.

You can skip this chapter if you plan to convert your Abc music to MusicXML, and do
the �nal forma�ing with another application.

59

60 CHAPTER 4. FORMATTING

4.1.1 How Directives Work

First of all, we examine an important di�erence between abcm2ps and abc2svg concerning
their output type.

abcm2ps produces page-oriented output; that is, music elements are wri�en to a page that
has de�nite geometry and layout (width, height, spacings, headers, footers, etc.). �is is called
page mode. abc2svg, by default, typesets music elements as SVG images embedded in HTML
pages; this is called block mode. To enable page mode in abc2svg, we must must specify the
page height as shown below. Some directives work in page mode, others in block mode.

Let’s now see how directives work. Many directives accept a parameter, optionally fol-
lowed by a type speci�er, of one of these types:

• a unit of length in centimeters (cm), inches (in), PostScript points (pt), or pixels (no
su�x): for instance, 30pt, 1cm, 0.3in, 20. A PostScript point is 1/72 inch or 0.353 mm;
1 pixel is 1/96 inch or 0.265 mm;

• a logical value that can be speci�ed using the words true, yes, 1 if positive; false, no,
0 if negative;

• a string, like Times-Bold 24;

• a number, either integer or �oat (that is, with decimals).

Directives may have a di�erent scope. �at is, they may a�ect the appearance and/or the
behaviour of di�erent elements:

• the whole Abc �le: this is called global scope;

• the current page;

• the current tune;

• the current voice;

• immediate (the directive will immediately apply to the next music elements);

• generation (the last directive of this scope will apply to the next music elements);

• restart (the directive acts as if a new tune were started.)

Most directives have a default value. For instance, abcm2ps uses ANSI le�er paper size by
default; page width is 8.5 inches, page height is 11 inches. In abc2svg, only the page width
is prede�ned, and it defaults to 21 cm (A4 paper width). For reference: A4 paper is 210× 297
mm, 595 × 842 points; le�er paper: 8.50 × 11.00 inches, 612 × 792 points.

Both programs have sensible default values, and usually make beautiful scores. In general,
you should refrain from messing about and changing too many directives. Unless you really
know what you are doing, chances are you’ll make the layout worse than the default. I suggest
that you only customise the following directives:

% PAGE LAYOUT
%

4.1. FORMATTING PARAMETERS 61

%%pagewidth 21cm
%%pageheight 29.7cm
%%topmargin 1.5cm
%%botmargin 1.5cm
%%leftmargin 1.5cm
%%rightmargin 1.5cm
%%topspace 0cm
%%footer " $T, p. $P "
%
% FONTS
%
%%titlefont Times-Bold 28
%%subtitlefont Times-Bold 22
%%composerfont Times-Roman 16
%%vocalfont Times-Roman 15
%%annotationfont Times-BoldItalic 14
%%footerfont Times-Roman 12
%
% MISC
%
%%measurebox yes % measure numbers in a box
%%measurenb 0 % measure numbers at start of line
%%pagescale 0.8 % page size
%%maxshrink 1.0 % compact the notes
%%linebreak <none> % automatic line breaks
%%squarebreve yes % typeset breve note as square glyph

As you can see, many directives have a self-explanatory name such as %%pagewidth or
%%leftmargin, while others need explanations. �e most important directives will be de-
scribed in the next few sections.

Once the page format and margins are set, you should be able to adjust the number of
pages of your scores just by changing the value of %%pagescale and %%maxshrink.

When directives are wri�en at the top of a �le, they apply to all of the tunes that follow. In
this case, they are called global parameters or global de�nitions. Directives can also be wri�en
within a tune and between tunes.

Most directives can also be used as abc2svg and abcm2ps options in the command line.
For instance, the following command line typesets music with abcm2ps, specifying the %%pa-
gewidth, %%pageheight, %%pagescale, and %%titlefont directives:

abcm2ps -c -O= --pagewidth "21cm" --pageheight "29.7cm" \

--pagescale 0.7 --titlefont "* 18" tunebook.abc

Spaces are not allowed in directive parameters that require a unit of length, when they are
speci�ed in the command line. Although quotes are optional, they should always be used to
avoid clashes with the shell. In the command line above, --titlefont "* 18"means: “leave
the title font unchanged, but change the font size to 18 pt”. �e asterisk must be enclosed in
quotes, otherwise trouble may occur.

As a �nal note: if the Abc source contains directives that are also speci�ed as command
line options, the la�er override the former. �at is: if our source contains the global parameter
%%pagescale 0.85, but we specify, say, --pagescale 0.7 as command line option, the
la�er will apply.

62 CHAPTER 4. FORMATTING

4.1.2 Using Format and Header Files

If we have many Abc �les that share a common format, it is preferable not to write the
directives in the sources. Format �les and header �les are a be�er option, because they keep
the format separated from the music. Should we want to change the parameters of our scores,
we would need to adjust them in just one �le.

Format �les have a .fmt extension, and contain directives without the leading double
percent characters %%:

% This is example.fmt

pagescale 0.85
topmargin 2 cm
titlefont Times-Bold 24
subtitlefont Times-Bold 20
...
% End of the format file.

�is is the corresponding Abc �le, which we will call a header �le. To make it clear that
is’s a header �le and not an ordinary Abc �le, it has a .abh extension:

% This is example.abh

%%pagescale 0.85
%%topmargin 2 cm
%%titlefont Times-Bold 24
%%subtitlefont Times-Bold 20
...
% End of the header file.

Let’s suppose we saved example.fmt and example.abh in the same folder as our source
�les. To format the �le mytune.abc using example.fmt, we insert the line:

%%format example.fmt

at the top of the source, or use abcm2ps’s -F option in the command line:

abcm2ps -O= -c -F example.fmt mytune.abc

�e .fmt extension can be omi�ed, both in the command line and in the source. Two or
more format �les can be used at the same time.

To use the header �le instead of a format �le, insert the line:

%%abc-include example.abh

at the top of the source. If you use abc2svg in the browser editor, you will be prompted to
load example.abh alongside the current source.

4.1. FORMATTING PARAMETERS 63

b Note

abcm2ps can use both format and header �les, while abc2svg only uses header �les
(only one per source, in the web editor). Using %%abc-include makes Abc �les com-
patible with both abcm2ps and abc2svg, and is therefore highly recommended.

If we keep your format �les in a folder, i.e. c:\music\format, we will also have to specify
the -D parameter followed by the folder name:

abcm2ps -O= -c -D c:\music\format -F example tune.abc

Binary packages for GNU/Linux and macOS usually store the format �les in /usr/share/

abcm2ps. As we already know, the command:

abcm2ps -V

reports the default format �le directory. �e current version of abcm2ps ships with three
format �les: flute.fmt, landscape.fmt, and musicfont.fmt; more could be included in
future releases, along with corresponding header �les.

Using format or header �les is the best solution when we want to typeset a series of pieces
that share the same style. Moreover, abcm2ps and abc2svg can be extended by de�ning
additional symbols, as we will see in Chapter 8 (page 121). Format �les containing libraries
of symbols can thus be employed when needed.

4.1.3 Changing Parameters

Parameter values can be rede�ned when necessary. In accordance with the directive’s scope,
changing its parameters may or may not take e�ect immediately. For example, page layout
directives will only change a�er a page break; directives with an “immediate” or “generation”
scope will take e�ect immediately a�er che change. Other directives cannot be changed mid-
tune, unless we insert a directive that has a “restart” scope. �e examples in the following
sections will clarify how changing parameters works.

4.1.4 Directives as I: Fields

�ere are two ways to change a parameter: either write a directive on a line on its own, or
an instruction �eld I: that is followed by the directive (spaces allowed). Instruction �elds can
also be wri�en inline.

For example, the directive:

%%vocalfont Times-Roman 12

can be wri�en as instruction �eld:

I:vocalfont Times-Roman 12

Now you understand what we did when we introduced I:clef.
A parameter change can be followed by the lock keyword. �is means that any following

change of the same parameter will not take e�ect, unless the lock is speci�ed again.

64 CHAPTER 4. FORMATTING

b Note

Directives should be preferable over I: �elds , because they are ignored by applications
that don’t implement them. On the contrary, the equivalent I:directive �eld will
probably cause a warning or error message if it’s not recognised.

Let’s use both methods to change the %%vocalfont directive in a tune; this directive
changes the font of lyrics in w: lines. Since it has a “generation” scope, the change is imme-
diate:

%%titlefont Times-Italic 24
X: 1
T: Silent Night
C: F. Gruber
M: 3/4
Q: "Andante tranquillo"
K: C
%
G>A G E3 | G>A G E3 | d2 d B2 B | c2 c G3 |
%%vocalfont Times-Roman 14
w: A- stro del ciel, Par- gol di- vin,
+: mi- te~A- gnel- lo re- den- tor!
I: vocalfont Times-Italic 14
w: Voi- ci No- \"el, \^o dou- ce nuit!
+: L'\'e- toile~est l\`a qui nous con- duit.
%%vocalfont Times-Roman 14
w: Si - lent night! Ho - ly night! All is calm,_ all is bright.

Silent Night
F. Gruber

Andante tranquillo

A stro del ciel, Par gol di vin, mi te A gnel lo re den tor!
Voi ci No ël, ô dou ce nuit! L'é toile est là qui nous con duit.
Si lent night! Ho ly night! All is calm, all is bright.

�is method can also be used to change the font in the same line:

X: 1
L: 1/4
K: C
CDEF | !ff!GAB!fermata!c | !mf!cBAG | !p!FED!fermata!C |
%%vocalfont Times-Roman 12
w: la la la la\
I: vocalfont Times-Bold 16
+: la la la la, la la la la\
%%vocalfont Times-Italic 12
+: la la la la.

4.1. FORMATTING PARAMETERS 65

la la la la la la la la, la la la la la la la la.

A be�er way to change fonts will be explained in the following sections.

4.1.5 Using Fonts and Text

Let me stress once again that text and fonts are a source of major incompatibility between abcm-

2ps and abc2svg. �ese programs use di�erent fonts by default, and typeset text di�erently.
Table 4.1 shows a subset of standard fonts that are shared by both abcm2ps and abc-

2svg. �ese fonts are functionally equivalent, even though their names and overall looks are
di�erent. �ese are the so-called “web-safe fonts”.

abc2svg understands PostScript font names; that is, if you select “Times-Roman”, abc-
2svg will use the corresponding SVG font, “serif”. abcm2ps, however, does not understand
all SVG font names. Hence, using PostScript font names is preferable, as both programs un-
derstand them.

abcm2ps also supports all others PostScript fonts, which are listed in Appendix A.6 (page
179). More fonts can be added to both programs, as we will see later on.

PostScript fonts (abcm2ps)

Times-Roman

Times-Bold

Times-Italic

Times-BoldItalic

Helvetica

Helvetica-Bold

Helvetica-Oblique

Helvetica-BoldOblique

Courier

Courier-Bold

Courier-Oblique

Courier-BoldOblique

SVG fonts (abc2svg)
serif
serifBold
serifItalic
serifBoldItalic
sans-serif
sans-serifBold
sans-serifItalic
sans-serifBoldItalic
monospace
monospaceBold
monospaceItalic
monospaceBoldItalic

Table 4.1: Default fonts for abcm2ps and abc2svg.

�ese are prede�ned fonts, which we can use anytime with any font directive. To use
other fonts, we have to declare them inserting the %%font directive at the top of the source.
Text and font related directives are:

• %%font declares a font, i.e. it tells the applications that the font will be used. If the font
name contains spaces, then it must be enclosed in double quotes;

• %%textfont sets a font. If the font is not one of the web-safe fonts, it must be declared
beforehand with %%font;

66 CHAPTER 4. FORMATTING

• %%text typesets a line of text;

• %%begintext. . .%%endtext de�ne a range of text lines to be typeset;

• %%center centers the following text;

• %%vskip inserts the speci�ed vertical space;

• %%sep inserts a short separator.

%%text lines are treated di�erently by abcm2ps and abc2svg. In abcm2ps, a %%text line
stops the music generation, and the text is typeset immediately. In abc2svg, the text is typeset
a�er the current music line. So, the following source produces di�erent output:

X:1
%%linebreak <none>
%%textfont Times-Bold 14
M:none
K:C
CDEF |
%%text Text within music lines
GABc | cBAG | FEDC |

Typese�ing with abcm2ps:

Text within music lines

Typese�ing with abc2svg:

Text within music lines

Here is an example that shows abcm2ps’s capability of alternating text in di�erent fonts
with pieces of music, using one of its additional PostScript fonts (AvantGarde-Book). We can
obtain similar (but not identical!) results using abc2svg and other fonts:

% declare non-predefined fonts
%%font AvantGarde-Book
%%musicspace -1cm
%%textfont Helvetica 18
%%center Typesetting example
%%vskip 0.4cm
%%textfont Times-Roman 16
%%begintext justify
This is an example of text inserted into an ABC file. This abcm2ps

4.1. FORMATTING PARAMETERS 67

feature allows for the writing of songbooks, music collections or other
publications without having to resort to a word processor. Not bad, is
it? Now let's write a brief musical example.
%%endtext
X: 1
M: 4/4
L: 1/4
K: C
%
!p!CCGG | AA!mf!G2 | !diminuendo(!FFEE | DD!diminuendo)!C2 |

%%vskip 0.4cm
%%textfont AvantGarde-Book 16
%%begintext align
Now we'll have a look at something more lively. To start with, let's
switch fonts: from Times-Roman to AvantGarde-Book. Here is the same
Etude with a few small variations to make it more interesting:
%%endtext
X: 2
T: Etude, second version
M: 4/4
L: 1/4
Q: "Adagio"
K: C
%
.C{DCB,}C.G{AGF}G|A>AG2|.F{GFE}F.E{FED}E|D>DC2|
%%sep 0.2cm 0.2cm 7cm
% the following line increases the character size, no font change
%%textfont * 18
%%center End of the example.
%%sep 0.2cm 0.2cm 7cm

Typesetting example

This is an example of text inserted into an ABC file. This abcm2ps feature allows for the writing of
songbooks, music collections or other publications without having to resort to a word processor. Not
bad, is it? Now let’s write a brief musical example.

4
4

p mf

Now we’ll have a look at something more lively. To start with, let’s switch fonts: from
Times-Roman to AvantGarde-Book. Here is the same Etude with a few small variations to
make it more interesting:

Etude, second versionAdagio

4
4

End of the example.

68 CHAPTER 4. FORMATTING

To use di�erent fonts in strings, we specify an alternate set of fonts with the %%set-

font-1, %%setfont-2, %%setfont-3, and %%setfont-4 directives, followed by a font name
and a font size in points. �ese can be referred to in strings as $1 $2 $3 $4, and have the
e�ect of changing the text font. $0 reverts to the default font.

%%setfont-1 Helvetica 24
%%setfont-2 Times-Italic 22
%%setfont-3 Helvetica-Bold 18
%%setfont-4 Courier 20
X: 1
M: C
L: 1/4
K: C
%%begintext
Hello. This is the default font, $1this is font 1, $2this is font 2,
$3this is font 3, $4this is font 4,$0 and now back to the default font.
%%endtext
CDEF | GABc |
W: It also works in $3W: fields!
W: $0It's useful to $3emphasise $0some parts.

Hello. This is the default font, this is font 1, this is font 2,
this is font 3, this is font 4, and now back to the default font.

It also works in W: fields!
It's useful to emphasise some parts.

All font directives and their default values are listed in Section A.5.3, page 168.

b Note

A couple of notes:

• if you use a font that is not recognised, it will be silently replaced by Courier
(abcm2ps) or serif (abc2svg);

• font se�ing directives have an extended syntax that will be explained later on;

4.1.6 Line, Sta�, Tune, and Page Breaks

A line break ends the current sta�, stretches the music between the page margins, and starts
a new sta� below the current one. �is is the default behaviour in Abc.

If we don’t use the -c option of abcm2ps, we can force line breaks de�ning one or more
line-breaking characters and keywords using the %%linebreak directive:

• valid characters are $! * ; ? @ separated by a space if we use more than one;

4.1. FORMATTING PARAMETERS 69

• the <none> keyword causes line breaks to occur automatically, and makes all line-
breaking characters invalid;

• the <EOL> keyword causes line breaks to occur at end of lines, and makes all line-
breaking characters invalid except ! ;

• %%linebreak with no parameters corresponds to %%linebreak <none>.

! Avoid mistakes!

�e ! line-breaking character was widely used in older Abc releases, but its use is
now discouraged.

�e breaking character should always be placed a�er a barline.
In the next example, only the �rst two music lines obey line breaks set with * and ! :

X: 1
L: 1/4
K: C
%%linebreak * !
CDEF | GABc |* CDEF | GABc | cdef | gabc' |!
%%linebreak
CDEF | GABc | CDEF | GABc | cdef | gabc' |

A sta� break is like a line break, but it will not stretch the music between the page margins.
�is is done with the %%stretchstaff 0 directive:

%%stretchstaff 0
X: 1
L: 1/4
K: C
CDEF|
CDEF|GABc|
CDEF|GABc|cdef|]

70 CHAPTER 4. FORMATTING

Another way to insert a line break is the %%vskip directive, which is normally used to

insert some vertical space. �e above tune could be wri�en as follows:

X: 1
L: 1/4
K: C
CDEF|
% 0-height vertical skip
%%vskip 0
CDEF|GABc|
%%vskip 0
CDEF|GABc|cdef|]

To avoid ugly results, forcing line and sta� breaks should be done with special care.
If a tune doesn’t �t in the current page, it is typeset on a new page; this is the default

behaviour in abcm2ps, while abc2svg always splits the tune. To obtain the same behaviour
in abcm2ps, we use the %%splittune directive followed by a logical value, or by the strings
odd or even to split the tune on odd or even pages.

Finally, to force a new page we use the aptly named %%newpage directive.

4.1.7 Avoiding Line Breaks

By default, 〈n〉 measures in a source line produce 〈n〉 measures in the score. Sometimes it
is not convenient to write, say, eight measures on the same line, because the source would
become less readable. In such cases, we can write the \ continuation character at the end of
a line to indicate that the sta� continues on the next line. In other words, \ means “no line
break here”. \ should be preceded by one or more spaces.

Most commonly, we will use \ in tunes with repeats; this is one of the cases when we
don’t want abcm2ps or abc2svg to format the music automatically. Typeset the following
tune with and without \ to see the di�erence:

X:92
T:Breeches Full of Stitches
R:polka
M:2/4
L:1/8
K:Amaj
%

4.1. FORMATTING PARAMETERS 71

"A" A>B cA | "D" BA ce | "A" A>B cA | "D" BA F2 | \
"A" A>B cA | "D" BA ce | A>B AF | "E" FE E2 :|
"A" e>f ec | "D" BA Bc | "A" e>f ec | "D" BA F2 | \
"A" e>f ec | "D" BA Bc | A>B AF | "E" FE E2 :|

Breeches Full of Stitches

A D A D A D E

A D A D A D E

To avoid line breaks entirely, even when line breaking characters are wri�en in the source,
we use the %%linebreak <none> command. It is the equivalent of the -c option; it also
works in the command line with abc2svg (please see Section 10.2, page 148.)

To typeset the above tune without line breakes, we will the following command:

$ abcm2ps --linebreak "<none>" -O= breeches.abc

Just like the -c option, %%linebreak <none> overrides \ and other line-breaking char-
acters.

4.1.8 Controlling Measures

�e number of measures per line may be controlled in various ways:

• in most cases, it is best to let abcm2ps or abc2svg do the work. Please refer to Sec-
tion 2.1.1, page 15;

• the opposite approach is inserting the exact number of measures in each line, then
running abcm2pswithout the -c option or adding I:linebreak <EOL> in the source;

• when we want each sta� to contain 〈n〉 measures, we use the %%barsperstaff 〈n〉
directive in the source or the option -B 〈n〉 in the abcm2ps command line;

• %%alignbars 〈int〉 aligns the bars of the next 〈int〉 lines of music. It only works on
single-voice tunes, and only with abcm2ps;

• %%equalbars 〈bool〉makes the width of measures proportional to their duration; only
available in abc2svg.

If the last line contains fewer measures that do not extend to the entire width of the page,
we can force the alignment using the %%stretchlast directive.

If you decide to set the number of measures yourself, be careful not to write too many or
too few per line! If you write too few, the score will look ugly; if you write too many, abcm2ps
or abc2svg will rework the lines at their discretion.

72 CHAPTER 4. FORMATTING

4.1.9 Voice Size

In addition to the scale parameter in V: de�nitions (Section 3.1.1, page 45), the note scale
(size) for a particular voice can be set using the %%voicescale directive. �is is useful to
specify di�erent sizes for the main voice and an overlay.

In this example, we want to typeset the main voice a bit larger than usual, and the overlay
voice a bit smaller. �e default value is 1, minimum size is 0.5, maximum is 1.5:

X:1
M:4/4
L:1/4
K:C
%%voicescale 1.2 % default=1
cdef & [I:voicescale 0.7] xxCD | gfed & EDCB, |
c2G2 & C2x2 | c2 z2 & E2x2 & G2x2 |

4.1.10 Repeated Sequences (Simile)
Sometimes, a tune contains repeated runs of notes or measures. Instead of writing the same
sequence multiple times, we can use the simile symbol that means “repeat the previous
notes/measures”. �is can be done with the inline �eld I:repeat, that replaces the previ-
ous sequence with the appropriate symbol.

�is �eld can also be followed by two numbers 〈n〉 and 〈k〉: the �rst indicates the number
of notes/measures to be replaced by the repeat symbol, the second the number of repetitions
we want. Let’s see an example:

X: 1
M: 4/4
L: 1/4
K: C
%
% let's repeat a single note three times
C [I:repeat 1 3] C C C |
% let's repeat a sequence of four notes twice
C//E//G//E// [I:repeat 4 2] C//E//G//E// C//E//G//E// C |
% let's repeat a whole measure once
CEGc | [I:repeat] CEGc |]

4.1. FORMATTING PARAMETERS 73

4.1.11 �e Grand Sta�

In piano music, the system consists of two staves; notes and stems are allowed to cross them.
�e I:staff 〈n〉 �eld is used to force the position of notes on a speci�c sta�, while

!xstem! draws a stem up to the note on the previous sta�. Top and bo�om staves are num-
bered 1 and 2, respectively. �e parameter can also be +1 or -1, meaning the next or the
previous sta�.

X:1
M:C
L:1/4
U: m = !xstem!
K:none
%%score {1 2}
V:1
cc//c//c//c//c2 | [CEGc]2[CEGc]2|
V:2 bass
mC,C,//mC,//C,//mC,//mC,2 | m[C,,C,]2[C,,C,]2 |
V:1
c/G/E/C/ [I:staff +1] C/G,/E,/C,/|C,/E,/G,/C/ [I:staff -1]C/E/G/c/|
V:2
z4 | z4 |

Z Warning

Unfortunately, cross-sta� slurs are not yet implemented in abcm2ps and abc2svg.

4.1.12 Change of System

In some pieces (say, for soloist and choir), only some instruments or voices play at any given
moment, while other instruments or voices are silent. Occasionally, we may want to typeset
the solo part only, and omit the silent voices.

We could be tempted to change %%score as needed and write only the active voices, but
for compatibility reasons %%score should only appear once and remain unchanged. We shall
write voices that do not play using rests or multi-measure rests, then use the %%staffnonote
directive.

%%staffnonote〈n〉 typesets or hides voices according to its parameter:

• if 〈n〉 = 0, only staves that contain visible notes are typeset;

• if 〈n〉 = 1, only staves that contain visible noted or visible rests are typeset;

• if 〈n〉 = 2, all staves are typeset.

74 CHAPTER 4. FORMATTING

Here is as example. �e following rendition of “Orientis partibus” (a medieval song) for
two voices has di�erent stanzas and a refrain. Stanzas are sung by the �rst voice only; the
refrain is sung by both voices. �e %%staffnonote 0 directive instructs the scorewriter to
typeset the active voice only, and hide voices that contain only rests.

X: 1
T: Orientis Partibus
C: Anonymous
M: 2/4
L: 1/8
%%score [1 2]
V:1 name=V1 sname=V1
V:2 name=V2 sname=V2
K: FMix
%%linebreak <EOL>
%%staffnonote 0
%
% 1 - 4: VOICE 1 ONLY
%
[V:1] FG AF | GE F2 | cc dB | cc A2 |
w: O-ri-en-tis par-ti-bus ad-ven-ta-vit a-si-nus,
[V:2] Z4 |
% 5 - 8
[V:1] AG BA | GF A2 | cB AF | GE F2 |
w: pul-cher et for-tis-si-mus, Sar-ci-nis ap-tis-si-mus.
[V:2] Z4|
%
% 9 - 14: BOTH VOICES
%
[V:1] F2 z2 | FG AG | F2 z2 | F2 z2 | FG AG | F2 z2 |
w: Hez, Hez sir as-nes, hez! Hez, hez sir as-nes, hez!
[V:2] A2 z2 |AB cB | A2 z2 | A2 z2 | AB cB | A2 z2 |
%
% 15 - 18: VOICE 1 ONLY
%
[V:1] FG AF | GE F2 | cc dB | cc A2 |
w: Hic in col-li-bus Si-chan iam nu-tri-tus sub Ru-ben
[V:2] Z4 |
% 19 - 22
[V:1] AG BA | GF A2 | cB AF | GE F2 |
w: tran-si-it per Ior-da-nem sa-li-it in Be-thle-hem.
[V:2] Z4|
%
% 23 - 28: BOTH VOICES
%
[V:1] F2 z2 | FG AG | F2 z2 | F2 z2 | FG AG | F2 z2 |
w: Hez, Hez sir as-nes, hez! Hez, hez sir as-nes, hez!
[V:2] A2 z2 | AB cB | A2 z2 | A2 z2 | AB cB | A2 z2 |

Blank Sheet Music

We can use %%staffnonote to typeset sheet music (i.e. only blank staves) using this code:

4.1. FORMATTING PARAMETERS 75

Orientis Partibus
Anonymous

V1

V2

 O ri en tis par ti bus ad ven ta vit a si nus,

V1

V2

 pul cher et for tis si mus, Sar ci nis ap tis si mus.

V1

V2

Hez, Hez sir as nes, hez! Hez, hez sir as nes, hez!

V1

V2

 Hic in col li bus Si chan iam nu tri tus sub Ru ben

V1

V2

 tran si it per Ior da nem sa li it in Be thle hem.

V1

V2

Hez, Hez sir as nes, hez! Hez, hez sir as nes, hez!

Figure 4.1: A piece with a variable number of systems.

76 CHAPTER 4. FORMATTING

X: 1
M: none
L: 1/4
K: C clef=none
%
%%staffnonote 2
%%stretchstaff 1
%%stretchlast 1
%%linebreak *
%%linewarn 0
% 12 blank staves
x4 [] * x4 [] * x4 [] * x4 [] * x4 [] * x4 [] *
x4 [] * x4 [] * x4 [] * x4 [] * x4 [] * x4 [] *

�e %%linewarn 0 directive turns o� the “Line underfull” warning messages.

4.1.13 Positioning Music Elements

�e position of many music elements can be speci�ed using the %%pos directive. It allows to
place decorations, accompaniment chords and lyrics above or below the sta�, and force note
stem direction.

�e syntax is:
%%pos 〈type〉 〈position〉
�e two parameters 〈type〉 and 〈position〉 are text strings. In particular, 〈type〉 can be one

of the following:

• dynamic, to specify the position of decorations concerning dynamics (e.g. !<(!, !>(!,
etc.);

• gchord, to specify the position of accompaniment chords;

• gstem, to specify the direction of grace notes stems;

• ornament, to specify the position of decorations concerning ornaments (e.g. !trill!,
!fermata!, etc.);

• stem, to specify the direction of normal notes stems;

• vocal, to specify the position of lyrics (once set, it cannot be changed);

• volume, to specify the position of decorations concerning loudness (e.g. !pp!, !pp!,
etc.).

Parameter 〈position〉 can be one of the following:

• auto for automatic position;

• above or up, above the sta�;

• below or down, below the sta�;

• hidden, to hide the music element;

4.1. FORMATTING PARAMETERS 77

• opposite, for opposite direction (applies to stem and gstem).

In the following example, we change the positioning of several music elements:

X: 1
M: C
L: 1/4
K: C
%%pos dynamic up
%%pos volume up
%%pos stem up
%%pos gstem auto
%%pos gchord down
%%pos ornament up
!<(!"C"CDE!<)!!f!F | !>(!"G"GFE!>)!!p!D | "C"CDEF | !fermata!{GA}G2 z2 |
%%pos dynamic down
%%pos volume down
%%pos stem down
%%pos gstem down
%%pos gchord up
%%pos ornament hidden
!<(!"C"CDE!<)!!f!F | !>(!"G"GFE!>)!!p!D | "C"CDED | !fermata!{CD}C2 z2 |]

C G C

C G C

4.1.14 Customising Slurs, Beams, Stems, and Flags

�e appearance of slurs, note beams, stems, and �ags can be further customised. �e %%flat-
beams directive enables the drawing of �at (horizontal) note beams; %%slurheight modi�es
the height of note slurs; %%straightflags draws straight note �ags, as commonly used in
bagpipe music; �nally, %%stemheight lets one specify the note stem height. Have a look:

X: 1
M: 4/4
L: 1/8
K: C
%%slurheight 2
%%flatbeams 1
%%straightflags 1
%%stemheight 30 % default: 20
(GABc) (cBAG) | G A B c G A B c |

X: 2
M: 4/4
L: 1/8
K: C
%%slurheight 0.5
%%flatbeams 0

78 CHAPTER 4. FORMATTING

%%straightflags 0
%%stemheight 20
(GABc) (cBAG) | G A B c G A B c |

�ese parameters are applied once, and cannot change midtune. If we want to change
their value, we will have to start a new tune, or insert a %%vskip command.

4.1.15 Customising Accompaniment Chords

To make accompaniment chords more visible, you may want to change their font and/or
highlight the chords with a box. �e relevant directives are %%gchordfont and %%gchordbox:

%%gchordbox 1
%%gchordfont sans-serifBoldItalic 16

X: 1
L: 1/4
M: C
K: C
%
"C"CDEF | "G"G2 G2 | "G7"GFED | "C"C2 C2 ||

C G G7 C

Another way to highlight accompaniment chords is typeset them in a di�erent colour. �e
following tune uses low-level code in PostScript and SVG that will be explained in Section 8.2,
page 122:

% postscript code for abcm2ps
%%ps /gcshow { 1 0 0 setrgbcolor show 0 0 0 setrgbcolor } !

% SVG code for abc2svg
%%beginsvg
<style>
.red {color:red}
</style>
%%endsvg
% use the "red" class in accompaniment chords
%%gchordfont * * class=red

4.1. FORMATTING PARAMETERS 79

X:1
T: Red accompaniment chords
L:1/4
M:C
K:C
%
"C"CDEF | "G"G2 G2 | "G7"GFED | "C"C2 C2 ||

Red accompaniment chords

C G G7 C

�e %%gchordfont accepts an additional argument that refers to the red class we de�ned
as SVG code.

In PostScript code, colours can be speci�ed as RGB components (real numbers between
0.0 and 1.0) before the setrgbcolor command. In SVG code, you may use HTML colour
names or the rgb(R, G, B) command; RGB components are numbers between 0 and 255.

4.1.16 Customising Tuplets

�e %%tuplets directive allows for �ne-grained tuplet indications. �e syntax is:
%%tuplets 〈where〉 〈what〉 〈value〉
Parameters are:

• where is a number that indicates where to typeset the tuplet indication. 0 = automatic,
1 = never, 2 = always.

• what is a number that indicates what to draw. 0 = draw a bracket, 1 = draw a slur.

• value indicates the number to typeset. 0 = the value of 〈n〉 in the tuplet, 1 = no value
at all, 2 = a ratio 〈n〉:〈t〉.

Common values are, for instance, I:tuplets 2 0 2 and I:tuplets 2 0 0:

X: 1
M: C
L: 1/4
K: none
%
"^Default"(3A/A/A/ "^tuplets 1 0 0"[I:tuplets 1 0 0](3A/A/A/ \
"^tuplets 2 0 0"[I:tuplets 2 0 0](3A/A/A/ \
"^tuplets 0 1 2"[I:tuplets 0 1 2](3A/A/A/ |\
"^nested - tuplets 2 0 2"[I:tuplets 2 0 2](7:8:8(3A/A/A/ A/A/A/A/A/ | z4]

3 3

3:2
3:2

7:8Default
tuplets 1 0 0

tuplets 2 0 0
tuplets 0 1 2 nested - tuplets 2 0 2

80 CHAPTER 4. FORMATTING

4.1.17 Customising Volta Brackets

By default, a volta bracket (the line above the sta�) extends over four measures, or just two
measures if the repeated section includes more than four measures. �ese two numbers can
be customised using the %%rbmax and %%rbmin directives.

Let’s suppose we want the volta bracket to extend at most for three measures, or just one
if there are more than three measures in the repeated section:

X: 1
M: 2/4
L: 1/4
K: C
%%rbmax 3
%%rbmin 1
|:CD |1 EF | GA | Bc | cG :|2 EF | GG | C2 ||

1 2

4.1.18 Combining Voices

When notes or rests of di�erent voices overlap because they are equal or nearly so, one
wants to �ne-tune the way they are typeset. �e %%voicecombine directive is followed by a
parameter that produces di�erent e�ects:

• -1: notes and rests are typeset as they are wri�en;

• 0: rests of equal duration are merged as one rest;

• 1: notes of equal duration are merged as a chord, with the exception of chord inversions,
unisons, second intervals;

• 2: notes of equal duration are always merged as a chord;

• 3: unisons are always merged as a single note.

X:1
M:none
L:1/4
K:C
%%score (1 2)
[V:1] [I:voicecombine -1] "^voicecombine -1"c2cz | c2 c2 | c2 z2 |\
[V:2] CEGz | z2 _B2 | c2 z2 |\
[V:1] [I:voicecombine 0] "^voicecombine 0"c2cz | c2 c2 | c2 z2 |
[V:2] CEGz | z2 _B2 | c2 z2 |
[V:1] [I:voicecombine 1] "^voicecombine 1"c2cz | c2 c2 | c2 z2 |\
[V:2] CEGz | z2 _B2 | c2 z2 |\
[V:1] [I:voicecombine 2] "^voicecombine 2"c2cz | c2 c2 | c2 z2 |
[V:2] CEGz | z2 _B2 | c2 z2 |

4.1. FORMATTING PARAMETERS 81

[V:1] [I:voicecombine 3] "^voicecombine 3"c2cz | c2 c2 | c2 z2 |
[V:2] CEGz | z2 _B2 | c2 z2 |

voicecombine -1 voicecombine 0

voicecombine 1 voicecombine 2

voicecombine 3

4.1.19 Colours

Especially for teaching purposes, it may useful to highlight a voice or a run of notes. �is can
be done typese�ing the voice at a di�erent scale using the scale= in the corresponding V:

�eld. A nice option is typese�ing the voice (or the notes) using a di�erent colour.
�e %%voicecolor #rrggbb directive changes the colour of the following notes. rr gg

bb are exadecimal values (i.e. in the range 00–�, capital le�ers allowed) of the red, green,
and blue colour components. Alternatively, the colour can be speci�ed using a valid HTML
4 colour name: aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive, purple, red,
silver, teal, white, and yellow.

In addition to voice colours, abc2svg also provides the %%bgcolor and %%fgcolor di-
rectives to set the page background and foreground colours.

%%bgcolor #f0f0f0 % light gray
%%fgcolor #008000 % dark green
X:1
M:C
L:1/4
K:C
%%score {1|2}
%
[V:1] [I:voicecolor blue]cccd | e2d2 | cedd | c4 |
[V:2] C,G,E,G, | [I:voicecolor #c00000] C,G,F,G, \
[I:voicecolor black] | E,G,F,G, | [I:voicecolor #008000] C,G,C,2 |

82 CHAPTER 4. FORMATTING

4.1.20 Multi-column Output

Text and music can be laid out in multiple columns that are de�ned using the %%multicol

start, %%multicol new and %%multicol end directives:

%%multicol start saves the current page margins and sets the vertical position for the be-
ginning of a column. At this point we can change the margins and typeset the material
in the �rst column.

%%multicol new moves the vertical position to the beginning of a new column, rese�ing
the margins. Change the margins again and typeset the material in this new column.
�is sequence may be repeated as many times as we wish.

%%multicol end reinitializes the page margins to the values that were used prior to %%multi-
col start, and moves the horizontal position below the columns that were typeset.

It sounds di�cult, but it’s actually quite easy as shown in the following example:

%%pagewidth 21cm
%%leftmargin 1cm
%%rightmargin 1cm
X: 1
L: 1/4
K: C
CDEF | GABc | cdef | gabc' |
%%multicol start
%%rightmargin 11cm
%%begintext justify
Sator arepo tenet opera rotas. Sator arepo tenet opera rotas.
Sator arepo tenet opera rotas. Sator arepo tenet opera rotas.
%%endtext
"^left"CDEF | GABc |
%%text Left column (margins: 1, 11)
%%text Width: 21 - 1 - 11 = 9 cm
%%multicol new
%%leftmargin 13cm
%%rightmargin 2cm
%%begintext justify
Sator arepo tenet opera rotas. Sator arepo tenet opera rotas.
Sator arepo tenet opera rotas.
%%endtext
"^right"cdef | gabc' |
%%text Right column (margins: 13, 2)
%%text Width: 21 - 13 - 2 = 6 cm
%%multicol end
CDEF | GABc | cdef | gabc' |

4.1. FORMATTING PARAMETERS 83

Sator arepo tenet opera rotas. Sator arepo tenet
opera rotas. Sator arepo tenet opera rotas. Sator
arepo tenet opera rotas.

 left

Left column (margins: 1, 11)
Width: 21 - 1 - 11 = 9 cm

Sator arepo tenet opera rotas.
Sator arepo tenet opera rotas.
Sator arepo tenet opera rotas.

 right

Right column (margins: 13, 2)
Width: 21 - 13 - 2 = 6 cm

4.1.21 Customising Titles

In addition to plain T: line(s), the tune title may be composed by several �elds.
Complex titles are speci�ed using %%titleformat, followed by a set of le�ers, digits,

and commas. Le�ers refer to Abc �elds, and may be anything in the range A . . . Z ; the cor-
responding �eld will be typeset. Digits may follow a le�er, meaning “0” for centre, “1” for
right align, or “-1” for le� align. A comma , forces a newline; unrecognized characters are
ignored.

%%writefields X
%%titleformat R-1 T0 C1, Q-1 T0 O1, T0 H1
X: 123
T: Main Title
T: Second Title
T: Last Title, The
C: Anonymous
H: Written many many years ago...
L: 1/4
M: 4/4
R: march
O: Scotland
Q: 1/4 = 108
K: C
CDEF | GABc | CDEF | GABc |]

march 123. Main Title Anonymous
 = 108 Second Title Scotland

The Last Title Written many many years ago...

First of all: the %%writefields command, followed by X, typesets the tune index number
before the �rst title.

84 CHAPTER 4. FORMATTING

Let’s examine the %%titleformat line. �e �rst part, R-1 T0 C1, typesets the rhythm
(R:) to the le�, the main title at the centre, the composer to the right, and starts a new line.
Q-1 T0 O1, typesets the tempo to the le�, the second title at the centre, the origin to the
right, and starts a new line. Finally, T0 H1 typesets the third title at the centre and the history
(H:) to the right.

Note the strange third title. As you can see, it was rearranged to read “�e Last Title”.
Whenever abcm2ps or abc2svg �nd that the last word of a title starts with a capital le�er
and it is preceded by a comma and a space, the word is moved to the head of the title. So it is
possible to write titles like “Bay of Fundy, �e”, which sorts alphabetically in a more logical
way.

To force the last word to its position (for example, “�at’s All, Folks”), write this line
before the tune: %%titletrim 0.

! Avoid mistakes!

Do not write the X: number in the tune title; it’s a very bad practice. Sooner or later,
you may need to rearrange the index numbers, and you would have to edit the tune(s)
manually to �x the title(s)!

4.1.22 Headers and Footers

�e following directives de�ne text that should be typeset automatically on all pages: %%hea-
der for the page header, and %%footer for the page footer. �ese directives, followed by text,
will typeset it centred on the page by default.

�ree areas may be de�ned: le�, centre, and right, each with di�erent text. If we de�ne
areas, the line of text should be enclosed in double quotes. Furthermore, the text may use
special symbols to insert speci�c information about the piece:

• $d typesets date and time of the last modi�cation of the current input �le;

• $D typesets the current date and time;

• $F typesets the name of the current �le;

• $I〈x〉 typesets the contents of a �eld (〈x〉 is capital le�er, from A to Z);

• $P typesets the page number;

• $P0 and $P1 typesets the page number, but only if it is even or odd;

• $T typesets the title of the current tune;

• $V typesets abcm2ps- followed by the version number;

• \n starts a second line of text.

�e three �elds must be separated by a tab character (see Section 1.2.3, page 7.)
Here is an example of the %%footer directive used to typeset the even page numbers on

the le�, the tune title in the centre, and the odd page numbers on the right. Note that the
three areas are not separated by spaces, but by tabs!

4.1. FORMATTING PARAMETERS 85

%%footer "$P0 $T $P1"

b Note

If you need to change headers and/or footers a�er a new page, insert their new de�ni-
tion before the %%newpage directive.

4.1.23 Inserting Graphics Files (abcm2ps)

Another interesting possibility is the addition of external EPS �les in the source, perhaps to
add a logo or a drawing to the score. We use the %%EPS directive followed by the name of the
�le to insert (abcm2ps only):

X: 1
T: Testing the use of my logo
K: C
CDEF GABc | cBAG FEDC |
cdef gabc' | c'bag fedc |
%%multicol start
%%leftmargin 1cm
%%rightmargin 10cm
%%text
%%text Beautiful music presented by...
%%multicol new
%%leftmargin 7cm
%%rightmargin 1cm
%%EPS logo.eps
%%multicol end

Testing the use of my logo

Beautiful music presented by... GG

abcm2ps will search for logo.eps in the directory containing the Abc sources or the
format �les (see below).

If the �le to be included is in another standard graphics format (e.g. JPG), it will need to
be converted to EPS using another command-line program, bmeps. It’s available from h�p:
//www.ctan.org/tex-archive/support/bmeps; I suggest that Windows users download the pro-
vided static binary.

bmeps is used as in this example:

$ bmeps -c myfile.png myfile.eps
$ _

http://www.ctan.org/tex-archive/support/bmeps
http://www.ctan.org/tex-archive/support/bmeps

86 CHAPTER 4. FORMATTING

If we omit -c, the resulting EPS �le will be black and white.
To include graphics �les with abc2svg, please refer to Section 4.1.27 (page 87).

4.1.24 Numbering Measures and Pages

Usually, in a piece only the �rst measure of each line is numbered: this can be done with
%%measurenb 0. To number all measures, use %%measurenb 1, while to typeset a number
every 〈n〉measures, we use %%measurenb 〈n〉. Measures are numbered starting from 1, unless
the �rst measure is incomplete (pick-up measure, or anacrusis); in this case, the anacrusis will
count as measure 0.

To set the initial bar number as 〈n〉, use %%setbarnb 〈n〉.
In addition to header and footers (Section 4.1.22, page 84), page numbers can be speci�ed

with the option -N 〈number〉 from the abcm2ps command line. Possible values are:

• 0: page numbering deactivated;

• 1: page number above on the le�;

• 2: page number on the right;

• 3: page number on the le� for even pages, on the right for odd pages;

• 4: page number on the right for even pages, on the le� for odd pages.

4.1.25 Sta� Gaps

In some pieces, we may want to specify the original key signature and voice extension (am-

bitus) at the beginning; or we may want to write a coda. �e sta� (or the staves) can be in-
terrupted with the %%staffbreak directive. �is directive doesn’t actually “break” the sta�;
rather, it makes a gap:

X: 1
L: 1/4
K: C alto4
%%setbarnb 0
%
!stemless![C,G]\
%%staffbreak 0.3cm
K: C treble
CCEE | GGcc | "^al coda"ccee!coda! | fgc2 |\
%%staffbreak 1.5cm
!coda!g2C2 |]

al coda

Since we write a “fake” �rst measure, we also specify the %%setbarnb 0 directive to
indicate that the �rst bar should be be numbered 0 instead of 1.

4.1. FORMATTING PARAMETERS 87

�e le�er f that follows %%staffbreak means that the sta� break is forced even if it
occurs at the beginning or end of a line. If the sta� is part of a system, then the sta� break
must be applied to all staves in the system.

4.1.26 Ambitus (abc2svg)

Using abc2svg, writing an ambitus is much simpler. All we have to do is insert the %%ambitus
1 directive, which will automatically establish the ambitus and typeset it before the clef:

X: 1
L: 1/4
M: C
K: C
%
%%ambitus 1
CEGc | ecGE | C4 |

4.1.27 Embedding XHTML (abc2svg)

When %%pageheight is not set, we can use the %%beginml. . .%%endml directives to include
XHTML code in Abc sources. For example, we can specify web links and images as in the
following example:

X: 1
T: Using web links
L: 1/4
M: C
K: C
%
CDEF | GABc |]
%%beginml
<style>
.center text-align: center; vertical-align: middle;
</style>
<div class="center">
Please follow this link
to find ABC software and documentation.

It's the ABC Plus site:
<img class="center" src="http://abcplus.sourceforge.net/Scherzando.png"
width=300>
</div>
%%endml

88 CHAPTER 4. FORMATTING

Using web links

Please follow this link to find ABC software and documentation.

It's the ABC Plus site:

Please note that cropping the resulting PDF �le with PDFCrop will disable the link, while
pdfcrop.sh will keep it active.

4.1.28 Saving Space

�ite o�en, one wants to typeset the score on the least possible number of pages. Once the
page layout and the margins have been set, parameters that can reduce the space are:

• �rst of all, the powerful directive %%pagescale 〈factor〉. By default, the score is pro-
duced with a scaling factor of 1. A greater value will enlarge the score, a smaller value
will reduce its size.

• reduce the space between staves with %%staffsep and %%sysstaffsep, and use di-
rectives for se�ing the vertical spacing of title, subtitle, lyrics, etc.

• if the -c option is used, the %%maxshrink 〈factor〉 can be used to reduce the horizontal
spacing between notes. Compression is maximum with 〈factor〉 = 1, minimum with
〈factor〉 = 0.

• to �a�en slurs and ties, use the %%slurheight and %%tieheight and directive speci-
fying values lesser than 1;

• sometimes, using %%notespacingfactor along with %%maxshrink might be e�ective.
Normally, the spacing of notes is proportional to their length, but using %%notespa-

cingfactor 1 all notes are equally spaced.

• in a �le containing several tunes, use %%topspace 0.

Please remember to consider the needs of those who don’t have an eagle-like sharp sight:
typese�ing a score at too small a scale will make life hard for the musicians! Further, bear in
mind that inkjet printers cannot print beyond the the page lower margin of 2 cm.

4.2 Transposition

Transposition is a complex subject, and it can be accomplished in di�erent ways. Unfortu-
nately, applications do not use the same syntax; nevertheless, we can transpose both typeset
and playback output.

4.2. TRANSPOSITION 89

4.2.1 Using %%transpose

�e %%transpose directive is supported by abcm2ps and abc2svg, but (as of this writing)
not by abc2midi. �is directive transposes typeset output; MIDI transposition uses other com-
mands, described in Section 7.1.8 (page 110). %%transpose can be used in two ways:

• %%transpose 〈n〉, where 〈n〉 is the number of half-tones the music should be trans-
posed;

• %%transpose 〈from-note〉〈to-note〉; the parameters are le�ers that represent the start-
ing note and the transposed note.

�e following tune is wri�en in C major, then it is transposed up two half-tones; that is,
to D major. A second transposition is speci�ed as C E, which means “from C to E �at”; the
tonic changes from C to E[, so the tune in transposed to E[major. Finally, cC transposes the
tune one octave down, since c in transposed down to C.

X: 1
L: 1/4
M: 4/4
K: C
%
CDEF | GABc | \ % up two half-tones: from C to D
%%transpose 2
CDEF | GABc | \ % from C to E flat
%%transpose C_E
CDEF | GABc | \ % down one octave
%%transpose cC
CDEF | GABc ||

%%transpose is useful to transpose music from concert pitch to another key for a trans-
posing instrument; e.g. for the B[clarinet. For example, a tune wri�en in the key of C that
includes a %%transpose 2 directive will be typeset as if it were wri�en in the key of D, but
the resulting MIDI will sound in C.

4.2.2 K: and V:Modi�ers (abc2svg)

abc2svg supports K: or V: transposition modi�ers:

• score=〈from〉〈to〉 transposes the typeset output only. 〈from〉 is the original note, 〈to〉
is the transposed note;

• sound=〈from〉〈to〉 transposes the playback only;

• shift=〈from〉〈to〉 transposes both the typeset and playback.

�ese modi�ers can also be applied globally when they are wri�en in a V:* �eld at the
top of a �le. Our previous example can be rewri�en as:

90 CHAPTER 4. FORMATTING

X: 1
L: 1/4
M: 4/4
K: C shift=CD
%
CDEF | GABc | CDEF | GABc ||

b Note

To transpose an Abc �le to a new, transposed Abc �le, we use abc2abc (Section 10.6,
page 155).

Chapter 5

Tablatures and Fingering Charts

abc2svg provides several directives that typeset tabulatures and chord grids for the guitar
and other string instruments. abcm2ps does not support these directives, but it can typeset
�ngering charts for a few wind instruments.

5.1 Tablatures

�e %%strtab directive is used to typeset a voice as tablature for the guitar or other string
instruments. �e syntax is:

%%strtab 〈string notes〉 [diafret]
�e �rst parameter is a list of notes that de�ne the instrument tuning; for example, stan-

dard guitar tuning is E,A,DGBe. �e optional string parameter diafret indicates that the
fretboard is diatonic, as in the dulcimer.

Sometimes, tablatures consist of two staves; the top sta� is in standard notation, the stave
below is the corresponding tablature. We could write two identical voices, but there’s a handy
shortcut. We can specify two voices in the V: �eld; notes that follow will be typeset on two
staves. Adding %%strtab to the de�nition of the second voice makes it a tablature:

X: 1
M: 3/4
L: 1/4
%%score 1 T % voice order
V: T % the second voice is the tablature
%%strtab E,A,DGBe % standard guitar tuning
K: C
%
V: 1,T % same notes on both voices
C D E | F G A | B A B | c2 z ||

T
A
B

91

92 CHAPTER 5. TABLATURES AND FINGERING CHARTS

b Note

Specifying multiple voices in V: produces no output in abcm2ps and abc2midi, and is
not supported by abc2xml.py.

Let’s now write a tablature for the mandolin in standard tuning GDAE; more precisely,
Gdae’. In this example we typeset only the tablature, and hide note stems using %%pos:

X:1
M:3/4
L:1/4
V:T
%%strtab Gdae' % standard mandolin tuning
%%pos stem hidden
K:G
%
V: T
G A B | c d e | f e f | g2 z ||

T
A
B

5.2 Chord Grids

Chord grids are used to typeset a summary of the chords that are played in a song. Two
di�erent formats are available:

• %%grid 〈n〉 typeset a chord grid above (〈n〉 = 1) or below (〈n〉 = -1) the tune;

• %%grid2 [n] replaces the notes of a voice with a chord grid. [n] may be any digit; when
it’s omi�ed, the chord grid is not typeset;

Both abcm2ps and abc2svg provide the %%capo 〈n〉 directive, which speci�es that a capo
should be used on fret 〈n〉.

�e following tune is wri�en in the key of E[, which is di�cult to play on the guitar. To
play the tune as if it were wri�en in C major, we specify a capo on the third fret. We also
typeset the chord grid and the chord diagrams:

X:1
L:1/4
M:4/4
K:Ebmaj
%
%%capo 3
%%grid 1
"Eb"EGBe | "Cm"CEGc | "Ab"AcAE | "Bb"BcBd | "Eb"e4 |

5.3. CHORD DIAGRAMS 93

E♭ Cm A♭ B♭ E♭

 C (capo: 3) Am F G C

E♭ Cm A♭ B♭ E♭

�e following tune shows %%grid2 in action:

X: 1
T: Happy Birthday with %%grid2
M: 3/4
Q: 1/4=120
K: Gmaj
V: 1
%%grid2 1
D> D| "G"E2D2G2 | "D"F3 z D> D | "D"E2D2A2 | "G"G3 z D> D |
w:Hap-py birth-day to you, Hap-py birth-day to you, hap-py
"G"d2B2G2 | "C"F2E z c> c | "G"B2G2"D"A2 | "G"G6 |]
w:birth-day dear fel-low, hap-py birth-day to you!

Happy Birthday with %%grid2
 = 120
Hap py birth day to you, Hap py birth day to

G D D

you, hap py birth day dear fel low, hap py birth day to you!

G G C G D G

5.3 Chord Diagrams

Chord diagrams show how to �nger a chord on the fretboard; they are commonly used in
guitar songbooks. Prede�ned chord diagrams are available for notes C, D, E, F, G, A B

(no sharps and �ats); supported chord types are major (no su�x), minor (m), seventh (7),
minor seventh (m7), major seventh (M7), and suspended fourth (sus4). Other chord types can
be added.

Chord diagrams are de�ned and typeset with the following directives:

• %%diagram typesets guitar chord diagrams above the notes, in addition to chord names;

• %%setdiag allows to de�ne or rede�ne guitar chord diagrams.

�ese are the prede�ned chord diagrams for C:

%%pagescale 1.3
%%diagram 6 % show diagrams
X: 1

94 CHAPTER 5. TABLATURES AND FINGERING CHARTS

M: none
L: 1/4
K: C
%
"C"C | "D"D | "E"E | "F"F | "G"G | "A"A | "B"B | "C"c ||

x 32 1 x 132 231
fr1

 342 23 4 234
fr2

 234 x 32 1

C D E F G A B C

To rede�ne existing diagrams or add diagrams for other keys or shapes, we use the
%%setdiag command as follows:

%%setdiag 〈name〉 〈dots〉 〈label[,pos]〉 〈�ngering〉 [barre=〈n1〉-〈n2〉]

where:

• 〈name〉 is the chord name;

• 〈dots〉 is a list of six fret positions: a digit 〈n〉 plots a dot on the 〈n〉th fret, ‘0’ or ‘x’
means “no dot”;

• 〈label〉 is a text label to be typeset at fret [pos]; ,0 means “no label”;

• 〈�ngering〉 indicates which �nger to use on each fret. ‘x’ means “mute string”, ‘0’ or ‘y’
means “open string”;

• [barre=〈n1〉-〈n2〉] draws a barre between strings 〈n1〉 and 〈n2〉. Strings are numbered
654321, from E, to e.

�e following source de�nes new chord diagrams for the key of C]:

%%pagescale 1.3
%%diagram 1

X: 1
L: 1/1
M: none
K: none
%%setdiag C# 043020 fr1,1 x43020 barre=3-1
%%setdiag C#m x03320 fr4,1 x03420 barre=5-1
%%setdiag C#7 x03030 fr4,1 002030 barre=5-1
%%setdiag C#m7 x42100 ,0 x42100
%%setdiag C#M7 x43000 fr1,1 x43000 barre=3-1
%%setdiag C#sus2 x03300 fr4 x03400 barre=5-1
%%setdiag C#sus4 000340 fr1,1 000340 barre=6-1
"C#"^C "C#m"^C "C#7"^C "C#m7"^C "C#M7"^C "C#sus2"^C "C#sus4"^C |

5.4. FINGERING CHARTS (ABCM2PS) 95

fr1
x 43 2

fr4
x 342

fr4
 2 3 x 421

fr1
x 43

fr4
x 34

fr1
 34

C♯ C♯m C♯7 C♯m7 C♯M7 C♯sus2 C♯sus4

Let’s examine how we de�ned C]. Guitar strings are numbered, right to le�, from 1 to 6:
1 is the high e, 6 is the low E,.

• %%setdiag C# de�nes the chord name;

• 043020: typesets a dot on string 5 at the 4th fret, on string 4 at the 3rd fret, on string 2
at the 2nd fret. �e other strings are not �ngered, so 0 means “no dots”;

• fr1,1 typesets the string fr1 at the 1st fret;

• x43020 typesets x above the 6th string, 4 above the 5th string, 2 above the 2nd string,
nothing above the other strings;

• barre=3-1 draws a barre from the 3rd to the 1st string.

Just as we de�ned new tablatures with %%strtab, we can also de�ne chords for other
string instruments with %%setdiag specifying fewer or more strings.

5.4 Fingering Charts (abcm2ps)

A �ngering chart is a simpli�ed notation format that indicates instrument �ngerings instead
of notes. It is meant to be easier than standard notation, and it is usually employed by folk
musicians and in introductory music courses for children.

abcm2ps provides prede�ned �ngering charts and provides support for user-de�ned charts.
�e format �le flute.fmt contains �ngerings de�nitions for tin whistles in several keys; for
the galoubet, a French three-hole �pple �ute; and of other three-hole instruments like the
English pipe (as in “pipe and tabor”) and the Basque txistu.

Specify the following parameters on the abcm2ps command line:
-F flute.fmt -T 〈key〉

to obtain �ngerings for the whistle in the key of 〈key〉 typeset under the sta�. �e parameter
〈key〉 is a digit corresponding to a key, as outlined in Table 5.1.

Digit 1 2 3 4 5 6 7 8
Key D C E[B[F G A C (galoubet)

Table 5.1: Keys for the flute.fmt format �le.

Here is an example. �e whistle in the key of D is the most commonly used; we’ll specify
the parameters -F flute.fmt -T1. An excerpt from “Atholl Highlanders”:

96 CHAPTER 5. TABLATURES AND FINGERING CHARTS

X: 1
T: The Atholl Highlanders
M: 6/8
L: 1/8
R: jig
K: AMix
|:e2e ecA|ecA Bcd|e2e ecA|Bcd cBA|e2e ecA|ecA Bcd|eae fed|cdB A3:|

The Atholl Highlanders

W
H

IS
T

LE

D

8
6

W
H

IS
T

LE

D

� � � � �

Chapter 6

Tune Collections

We learnt in Section 1.2.4 (page 8) that Abc �les may contain several tunes. �is feature,
along with the ease of use of Abc, spurred the creation of many Abc tune collections

on the Internet.
�e ability to create tune collections is one of the strongest points of Abc, and is not

replicated by any other music notation format or application.

6.1 Index Number: X:

In the examples examined so far, we dealt with Abc �les containing a single tune, so we
ignored the X: �eld. To be precise, since the X: �eld is obligatory we did use it, but we
simply wrote X:1 all the time.

In tune collections, the X: �eld is used as an index number to “tag” each tune and make it
unique. �is feature can then be used by applications to create tune databases, or for extrac-
tion purposes. For example, we will see (Section 7.1.2, page 106) that abc2midi creates MIDI
�les writing the X: �eld number in the �le name.

In a tune collection, the X: �eld of each tune should be a di�erent number. Tunes need
not be sorted by their X: �eld. �e following source is an example of tune collection:

%%header " $T "
%%footer " $P "
%%writefields X

X: 2
T: Apples In Winter
M: 6/8
L: 1/8
R: jig
K: Edor
|:G/A/ | BEE dEE | BAG FGE | DA,D FDF | ABc ded |

BEE BAB | def ~g2 e | fdB AGF | GEE E2 ::
%
d | efe edB | e/f/ge fdB | dec dAF | DFA def |
|1 efe edB | def ~g2a | bgb afa | gee e2 :| \
|2 edB def | gba ~g2e | fdB AGF | GEE E2 ||

X: 92

97

98 CHAPTER 6. TUNE COLLECTIONS

T: Breeches Full of Stitches
R: polka
M: 2/4
L: 1/8
K: Amaj
A>B cA | BA ce | A>B cA | BA F2 | \
A>B cA | BA ce | A>B AF | FE E2 :|
e>f ec | BA Bc | e>f ec | BA F2 | \
e>f ec | BA Bc | A>B AF | FE E2 :|

X: 88
T: Wind That Shakes The Barley, The
M: C|
L: 1/8
R: reel
K: Dmaj
A2AB AFED | B2BA BcdB | A2AB AFED | gfed BcdB |
A2AB AFED | B2BA BcdB | A2AB AFED | gfed Bcde |
f2fd g2ge | f2fd Bcde | f2fd g2fg | afed Bcde |
f2fd g2ge | f2fd Bcde | f2ae g2be | afed BcdB |

% ...many more tunes may follow...

As you can see, each tune starts with its X: �eld and ends with one or more blank lines.
Please note the %%writefields line.

6.2 Information Fields

A tune collection is especially useful if it contains information associated to each tune, such
as the country of origin, related discography, instrument, and so on. Using this information,
we can browse a collection and select only the tunes that meet speci�c criteria.

�e following Abc �elds are speci�cally designed to be used in tune collections:

A: area. Used to specify an area within the country where the tunes originates. Example:
A:Dublin

B: book. Example: B:Francis O’Neill: "The Dance Music of Ireland" (1907)

D: discography. Example: D:"The Chieftains 4" by The Chieftains

F: �le name. Example: F:DrowsyMaggie.abc

G: group. Usually used to specify the instrument on which the tune is played. Example: G:-
whistle, flute

H: history. Example: H:this tune was collected by...

I: instruction. Example: I:score (1 2)

N: notes. Example: N:sometimes spelt "Drowsey Maggie"

O: origin. Used to specify the country of origin of the tune. Example: O:Ireland

6.3. INCLUDING ABC FILES 99

R: rhythm. Example: R:Reel

S: source. Used to specify where theAbc tune was found. Example: S:from John Chambers’

site

Z: transcription notes. Example: Z:Transcribed in C, originally in D

If you contribute Abc �les to public sites such as h�p://www.thesession.org/, I suggest
that you include at least the O:, R:, and D: �elds. Besides, including the Q: �eld to give a
speed indication is highly recommended!

6.3 Including Abc Files

While it is possible to create a tune collection as a single big �le, it could be more convenient
to split it into several �les. We may want to split a collection by tune type, or by title, or other
criteria.

To typeset the whole collection, we do not have to join the �les manually. �e %%abc-in-
clude directive includes external Abc or format �les in the current output. A tunebook could
be as simple as:

%%format tunebook

%%abc-include a-f.abc
%%abc-include g-l.abc
%%abc-include m-s.abc
%%abc-include t-z.abc

6.4 Songbooks

�e body of a tune may consist of text lines; strange though it may seem, melody lines can
be omi�ed. �is means that we can write songbooks in Abc, as in the following example:

%%textfont Courier 14
%%titlefont Times-Bold 18
%%composerfont Times-Italic 16
%%titleleft 1
%%aligncomposer -1

X: 131
T: Hey Jude
C: The Beatles
K: Fmaj
%%begintext

F C
Hey Jude don't make it bad

C7 F
take a sad song and make it better
Bb F
Remember to let her into your heart

http://www.thesession.org/

100 CHAPTER 6. TUNE COLLECTIONS

C F
and then you can start to make it better
...
%%endtext

X: 148
T: Rehab
C: Amy Winehouse
K: Cmaj
%%begintext

C
They try to make me go to rehab I say no no no
C
Yes, I've been black but when I come back you'll know, know, know
G F
I ain't got the time and if my daddy thinks I'm fine
C F C
He's tried to make me go to rehab I won't go go go
...
%%endtext

X: 203
T: Imagine
C: John Lennon
K: C
%%begintext
(intro)
C Cmaj7 F
C Cmaj7 F
C Cmaj7 F
Imagine there's no heaven
C Cmaj7 F
It's easy if you try
C Cmaj7 F
No hell below us
C Cmaj7 F
Above us only sky
...
%%endtext

To make sure that chords and lyrics lines are properly aligned, we must set the text font
as Courier (monospace). If we want to make the chords more visible, we can typeset them
using Courier Bold, which preserves the alignment:

%%setfont-1 Courier-Bold 14
%%setfont-2 Courier 14
%%titlefont Times-Bold 18
%%composerfont Times-Italic 16
%%titleleft 1
%%aligncomposer -1

X: 131
T: Hey Jude
C: The Beatles

6.5. SELECTING TUNES 101

K: Fmaj
%
%%begintext
$1 F C
$2Hey Jude don't make it bad
$1 C7 F
$2take a sad song and make it better
$1Bb F
$2Remember to let her into your heart
$1 C F
$2and then you can start to make it better
...
%%endtext

Each song in the songbook will look like this:

Hey Jude
The Beatles
 F C
Hey Jude don't make it bad
 C7 F
take a sad song and make it better
Bb F
Remember to let her into your heart
 C F
and then you can start to make it better
...

You may wonder why one should write songbooks using Abc instead of plain text or
ad-hoc so�ware; the following section explains why.

6.5 Selecting Tunes

An incredibly useful feature of abcm2ps and abc2svg is the ability to output only the tune(s)
in a tune collection that meet some user-de�ned criteria. For example, we may want to output
only the tunes in a certain index range, or tunes of a certain kind (e.g. only jigs), or whose title
matches a pa�ern (“Humours of”. . .), or what have you. All this is done using the %%select
directive, followed by one of two di�erent types of parameter.

�e �rst type is an index range, that is a series of numbers that indicate X: �elds. For
instance, if we write the following line at the top a tune collection, only the tunes numbered
10, 12, in the range 20–30 will be typeset:

%%select 10,12,20-30

...tunes follow below...

�e same result can be obtained using the -e command line option of abcm2ps:

abcm2ps -O selected_tunes.ps -c -e 10,12,20-30 tunebook.abc

abcm2ps-8.14.12 (2021-07-14)

102 CHAPTER 6. TUNE COLLECTIONS

File tunebook.abc

Output written on selected_tunes.ps (2 pages, 3 titles, 38501 bytes)

In an index range we can omit the last number to specify “to the end”. �at is, 20-- means
“from tune #20 to the last tune”.

If we want to select tunes by other �elds, we can use a regular expression. �is is quite a
complex subject, but it can be simpli�ed: a regular expression is basically a string, containing
special characters, that matches several other strings.

Le’t see a �rst example. �is directive selects tunes that specify “jig” in their R: �eld:

%%select R:.*jig

More precisely, the above line means: select all tunes that contain an R: �eld, possibly
followed by one or more spaces (the .* bit), followed by “jig”. �e corresponding command
line option is:

abcm2ps -c -O jigs.ps -e "R:.*jig" tunebook.abc

abcm2ps-8.14.12 (2021-07-14)

File tunebook.abc

Output written on jigs.ps (31 pages, 64 titles, 340348 bytes)

To select all tunes in the key of A minor, we will use:

%%select K:.*Amin

To select all tunes that have the word “Humours” in the title, we will use:

%%select T:.*Humours

Z Warning

Global parameters and parameters between tunes will be included in the output of a
%%select directive, probably causing unexpected results!

6.6 Incipits

Another type of tune selection is an incipits �le, which is a special tunebook containing only
the �rst measures of each tune. Incipits �les are especially useful for musicians who learn
the music by heart, but need a tune list before or during the performance. “Incipit” is Latin
and it means “(it) begins”.

�is feature is provided by a couple of directives working together: %%tune and %%clip.
�e �rst is similar to the %%select directive we examined, and it is followed by a regular
expression to specify the tunes we are interested in. �e second is followed by a symbol

selection: in its simplest form, the number of measure bars we want to typeset.
So, if we want to typeset only the �rst four measures of each tune in a tune collection, at

the top of the �le we will write the following lines:

6.6. INCIPITS 103

%%tune .*
%%clip 1-5

In plain English, these mean: select all of the following tunes (the .* bit), and typeset only
the measures included between the �rst and the ��h measure bars.

To typeset incipits of tunes marked as jigs in their R: �eld, we will do:

%%tune R:.*jig
%%clip 1-5

and similarly for any regular expression we may invent.

� � � � �

104 CHAPTER 6. TUNE COLLECTIONS

Chapter 7

Playing

7.1 MIDI Conversion

In addition to printable output, Abc can also produce playback �les; speci�cally, MIDI
�les.
You might be surprised to learn that MIDI �les are not audio �les, like (say) MP3! In fact,

a midi �le is, roughly speaking, an electronic score. It contains instructions that tell MIDI
instruments (or a so�ware MIDI player) what notes to play and how to play them. It is not
as high-level as sheet music; electronic instruments and computers need to be told exactly
what and how to play. In fact, real scores carry a bit of ambiguity. For instance, just how long
a fermata is? MIDI �les are not as sophisticated as a human player. Moreover:

Z Warning

while a score in PDF format will look the same on any computer, this does not hold
true for MIDI �les! In fact, the quality of a MIDI �le output depends on the sound card
of the computer and the so�ware that is used to listen to it.

Having a MIDI version of our Abc music is convenient, because we get an immediate
feedback of what we wrote. It is especially true for people who can’t easily read music.

To this end, we use the free abc2midi program. Given a tune collection in a �le called
file.abc, abc2midi creates a MIDI �le for each tune adding the index number of the X:

�eld to each �le name: file1.mid, file2.mid, . . . abc2midi is a command-line program.
abc2midi supports up to 16 voices (“channels”, in MIDI lingo) that can play at the same

time, as de�ned by the MIDI standard. Each channel can be associated one of the standard
128 MIDI instruments (“programs”), and their loudness (“velocity”) can be controlled inde-
pendently. Don’t ask me about the strange terminology.

abc2midi is just one of the programs of the abcMIDI package:

• abc2abc: veri�cation, forma�ing and transposition of Abc source �les;

• midi2abc: conversion of MIDI �les to Abc;

• yaps: a command-line forma�er analogous to abcm2ps, but less powerful.

Before we start, some information for GNU/Linux users is needed.

105

106 CHAPTER 7. PLAYING

7.1.1 A So�ware MIDI Player: TiMidity++

Some advanced sound cards have a built-in MIDI syntesizer, but cheap cards usually do not
provide this feature. In this case, some GNU/Linux users may need a so�ware MIDI player.
One of the best is TiMidity++ (h�p://timidity.sourceforge.net/), usually provided by major
GNU/Linux distributions.

Unfortunatley, there’s a catch. By default, TiMidity++ may not provide all 128 MIDI in-
struments, which are mapped to so-called instrument patches. Simply put, these are �les that
provide sounds. Some patches may be missing, which results in MIDI �les that apparently do
not play and/or lack some voices.

Replacing the missing instruments is easy. By default, TiMidity++ con�guration �les are:

/etc/timidity/timidity.cfg

/etc/timidity/freepats.cfg

�e �rst �le should contain a couple of lines that read:

By default, try to use the instrument patches from freepats:

source /etc/timidity/freepats.cfg

To replace a missing instrument, edit the second �le. Let’s suppose you miss the instru-
ment 41 (Viola) under the bank 0 section. Add this line:

41 Tone_000/040_Violin.pat

which implements the Viola instrument using the same patch used for violin. Not perfect,
but it works.

As a be�er solution, you may want to install a more complete patch set. Most GNU/Linux
distributions provide two packages called fluid-soundfontgm and fluid-soundfont-gs.
Install the packages and con�gure TiMidity++ to use them by modifying timidity.cfg:

By default, try to use the instrument patches from freepats:

source /etc/timidity/freepats.cfg

alternatively, you can use the fluid-soundfont:

source /etc/timidity/fluidr3_gm.cfg

source /etc/timidity/fluidr3_gs.cfg

An alternate program to play MIDI �les is FluidSynth, h�p://www.�uidsynth.org, which
also uses the Fluid patches.

7.1.2 Our First Midi

Do you remember the �rst scale and the command-line instructions we examined in Sec-
tion 1.2.4 (page 8)? We wrote a very simple Abc source and turned it into PostScript using
abcm2ps in the command line.

In a similar way, we can obtain our �rst MIDI �le. Given the source �le scale1.abc (or
another source you want to convert), this command will create the corresponding MIDI �le:

http://timidity.sourceforge.net/
http://www.fluidsynth.org

7.1. MIDI CONVERSION 107

abc2midi scale1.abc

Warning in line 2 : No M: in header, using default

writing MIDI file scale11.mid

�e new �le scale11.mid will be wri�en in the same folder as the source. Warning
and/or error messages will be issued when minor and/or serious problems are found.

By default, the MIDI �le name is composed using the source �le name followed by a
number, corresponding to the number in the K: �eld of the tune. If you feed abc2midi a tune
collection, a MIDI �le will be created for each tune.

To play the MIDI �le in the command line:

timidity scale11.mid

7.1.3 Example: How To Make a Ringtone

MIDI �les are not very impressive to listen to, but they can be very useful. For example, I
made my own simple ringtone following a few simple steps; I used TiMidity++ to convert
the MIDI �le to WAV, then Lame (h�p://lame.sourceforge.net/) to encode the WAV �le to
MP3.

First, I wrote the ringtone (Ring.abc):

X:1
M:2/4
L:1/32
Q:1/4=240
K:Amaj
%%MIDI program 1 80
|:ac'ac'ac'ac'ac'ac'ac'ac'|ac'ac'ac'ac'ac'ac'ac'ac'|[L:1/2]z:|

then I ran abc2midi and obtained Ring1.mid. To convert the MIDI �le to MP3, I used the
following commands (boldface):

˜$ timidity -A400 -Ow Ring1.mid

Playing Ring1.mid

MIDI file: Ring1.mid

Format: 0 Tracks: 1 Divisions: 480

Sequence: Trillo

Text:

Output Ring1.wav

Playing time: ˜7 seconds

Notes cut: 0

Notes lost totally: 0

˜$ lame Ring1.wav Ring1.mp3

LAME 3.98.4 32bits (http://www.mp3dev.org/)

CPU features: MMX (ASM used), SSE (ASM used), SSE2

Using polyphase lowpass filter, transition band: 16538 Hz - 17071 Hz

Encoding Ring1.wav to Ring1.mp3

Encoding as 44.1 kHz j-stereo MPEG-1 Layer III (11x) 128 kbps qval=3

Frame | CPU time/estim | REAL time/estim | play/CPU | ETA

206/206 (100%)| 0:00/ 0:00| 0:00/ 0:00| 24.460x| 0:00

http://lame.sourceforge.net/

108 CHAPTER 7. PLAYING

kbps LR MS % long switch short %

128.0 53.9 46.1 98.5 1.0 0.5

Writing LAME Tag...done

ReplayGain: -2.4dB

˜$ _

�en I transfered Ring1.mp3 to my smartphone.

b Note

In the following sections, I will include some sound samples. In theory, MIDI �les cre-
ated by abc2midi should be playable on all computers, but unless you have the same
instrument patches that I use (or compatible ones) there is a chance that you can’t lis-
ten to them. �erefore, all MIDI �les were converted to MP3 �les with Lame, as shown
above.

7.1.4 Supported Decorations

Some of the decorations described in Section 2.2.11 (page 40) are supported by abc2midi and
produce playback:

!ppp! !pp! !p! !mp! !mf! !f! !ff! !fff! !breath! !arpeggio!

!crescendo(! !crescendo)! !<(! !<)! !diminuendo(! !diminuendo)! !>(! !>)!

Default volume is equivalent to !f!.

7.1.5 %%MIDI Directives

Just as abcm2ps provides directives for changing page layout details, abc2midi provides
directives for audio e�ects.

abc2midi uses meta-comments for its low-level details. To be more precise, only the
meta-comment %%MIDI, followed by di�erent parameters, is actually used.

Directives can be wri�en in two ways. One is the usual meta-comment syntax: a single
line containing %%MIDI 〈directive〉 〈parameters〉 is entered. �e second way is using
an inline I �eld: [I:MIDI = 〈directive〉 〈parameters〉] (spaces are optional). Note the
= character.

To clarify, the two following sources are equivalent:

X: 1
T: MIDI directives as meta-comments
L: 1/4
K: C
%%MIDI program 1
CDEF|
%%MIDI program 109
GABc|

7.1. MIDI CONVERSION 109

X: 1
T: MIDI directives as inline I: fields
L: 1/4
K: C
[I:MIDI = program 1] CDEF|[I:MIDI = program 109] GABc|

�e second method makes the source more readable.

7.1.6 Avoiding abcm2ps Extensions

Inevitably, a music typese�er is more complex and supports more features than a MIDI con-
verter. As a result, in some cases abc2midi can’t handle directives that only make sense in
printed output.

For example, think of a block of text lines de�ned by %%begintext and %%endtext (see
Section 4.1.5, page 65). When abc2midi �nds these directives, it simply ignores them. How-
ever, it will try and convert the text lines in between to MIDI, which will result in lots of error
messages and garbage output. (Note that %%text lines will be rightly ignored with no side
e�ects.)

To avoid this and other possible mishaps, use the %%MidiOff directive to tell abc2midi
to ignore the next lines until the %%MidiOn directive is found:

...
%%MidiOff
%%begintext
This text will be typeset by abcm2ps,
but will not be converted to MIDI.

%%endtext
%%MidiOn
...

7.1.7 Voices and Instruments

Let’s consider “Ave Verum Corpus”, which we examined in Section 3.1.2 (page 49). Converting
it with abc2midi, we obtain a MIDI �le in which the music output is played by the MIDI
instrument 1: acoustic piano. In many cases, we don’t need anything else: to study the part
before a concert, the MIDI is just �ne. But abc2midi can do much more.

One of the most important abc2midi directives is %%MIDI program, which associates a
voice with a particular instrument. Let us add these directives to associate each voice with
the right instrument:

X: 1
T: Ave Verum Corpus
C: W. A. Mozart
M: 4/4
L: 1/4
Q: "Adagio"
%%score [(S A) (T B)] (MD1 MD2) | (MS1 MS2)
%%MIDI program 1 53 % Choir Oohs
%%MIDI program 2 53

110 CHAPTER 7. PLAYING

%%MIDI program 3 53
%%MIDI program 4 53
%%MIDI program 5 19 % Church Organ
%%MIDI program 6 19
%%MIDI program 7 19
%%MIDI program 8 19
V: S clef=treble name="Soprano" sname="S"
V: A clef=treble name="Alto" sname="A"
V: T clef=bass name="Tenor" sname="T"
V: B clef=bass name="Bass" sname="B"
V: MD1 clef=treble name="Organ"
V: MD2 clef=treble
V: MS1 clef=bass
V: MS2 clef=bass
K: D
%
% ... body of transcription ...

�e eight voices S A T B MD1 MD2 MS1 MS2 are automatically assigned by abc2midi

the numbers 1 to 8. �en the %%MIDI program directives follow that associate each voice
with an appropriate MIDI instrument, MIDI 54 (“Choir Oohs”) or 20 (“Church Organ”).

Another way to assign an instrument to a voice is the following:

%%MIDI channel 1 % selects melody channel 1 (range: 1-16)

%%MIDI program 53 % assigns 53 to current channel

�e numbers that identify each instrument are listed in Appendix A.8 (page 183). Note
that the numbers in the list range from 1 to 128, whereas abc2midi numbers them 0 to 127. If
no MIDI program is speci�ed, voices will be assigned by default the General MIDI instrument
1.

7.1.8 MIDI Transposition

abc2midi does not support the transposition syntax we studied in Section 4.2 (page 88), and
provides its own:

• the transpose=〈n〉 modi�er, applicable to K: and V: �elds;

• the %%MIDI transpose〈n〉 and %%MIDI rtranspose〈n〉 directives.

�e following tune uses shift to let abc2svg transpose its output by two semitones, and
adds %%MIDI transpose 2 to transpose the resulting MIDI �le:

X: 1
L: 1/4
M: 4/4
K: C shift=CD
%%MIDI transpose 2
CDEF | GABc | CDEF | GABc ||

%%MIDI transpose〈n1〉 followed by %%MIDI rtranspose〈n2〉 will perform transposi-
tion of 〈n1+n2〉 half-tones.

7.1. MIDI CONVERSION 111

7.1.9 Changing Instruments in Repeats

Let’s suppose we have a repeat, and we want it to play with di�erent instruments the �rst
and second time. We will have to insert a %%MIDI program directive just before the bar that
ends the repeat.

In the example below, the �rst run is played as MIDI instrument 21 (accordion), the second
as MIDI instrument 73 (�ute):

X: 1
M: 4/4
L: 1/4
K:C
%%MIDI program 21
|: CDEF | GABc [I:MIDI program 73] :|

Unfortunately, there is no way to change instruments when repeats occur three or more
times.

7.1.10 Accompaniment Chords

�e accompaniment chords described in Section 2.2.9 (page 37) are used by abc2midi to
generate an accompaniment to the main melody. A lowercase le�er a . . . g can be used as
note name; abc2midi will play the fundamental note instead of the chord.

If the optional note is present, as in C/B or C/E, two cases are possible. If the note does
not belong to the chord as in the �rst example, it will be added below the fundamental note
of the chord. If it does belong as in the second example, chord inversion will be applied and
the note will become the lowest in the chord.

Currently recognised chords are:

m 7 m7 m7b5 maj7 M7 6 m6 aug + aug7 dim dim7 9

m9 maj9 M9 11 dim9 sus sus4 sus9 7sus4 7sus9 5

Additional chords can be de�ned with %%MIDI chordname, explained in Section 7.1.11
(page 113).

Accompaniment chords are rendered by abc2midi as a sequence of fbcz for each mea-
sure. f stands for the fundamental or root of the chord, b for the fundamental and the
chord played together, c for the chord itself, and z for a rest. A fbcz sequence is designed
to match a time signature: for example, in 4/4 time the accompaniment is fzczfzcz: funda-
mental, rest, chord, rest, fundamental, rest, chord, rest.

abc2midi associates speci�c fbcz sequences to the more common time signatures: fzczcz
for 3/4 time, fzcfzc for 6/8, fzcfzcfzc for 9/8, and fzcfzcfzcfzc for 12/8.

In practice, the following piece:

X: 1
M: 4/4
L: 1/4
K: C
%
"C"CDEF|"G"GABc|"C"C2"G"E2|"C"Czz2|

112 CHAPTER 7. PLAYING

will sound as if it were wri�en like this:

Beware: the fbcz sequence does not correspond to the beats in a measure, and the length
of the elements does not depend on the value of the L: �eld. Sequences are adapted to match
one measure; thus, fcz, d2c2z2 and f4c4z4 have equivalent meaning.

If you don’t hear accompaniment chords, your tune might have a time signature for which
a prede�ned fcz sequence is missing: for example, 3/8, 5/4 or 7/8. �e sequence can be easily
added, though. For example, a sequence for 7/8 is fzbczcz.

�e fcz sequence can be modi�ed when desired with the %%MIDI gchord directive. Here
is the above tune with a simpler accompaniment:

X: 1
M: 4/4
L: 1/4
K: C
%%MIDI gchord c4c4
%
"C"CDEF|"G"GABc|"C"C2"G"E2|"C"Czz2|

Here we changed the sequence to c4c4 to obtain two chords in every measure.
To modify the instrument associated with the chord, the %%MIDI chordprog directive is

used; for the fundamental, %%MIDI bassprog. To specify the volume, use %%MIDI chordvol

for the chord and %%MIDI bassvol for the fundamental (from 0 to 127). Finally, to disable
temporarily accompaniment chords use %%MIDI gchordoff, and %%MIDI gchordon to turn
chords back on.

Note that chords will continue to be played even when the melody stops. �e following
tune has no melody, but only accompaniment chords:

X: 1
T: La Folia
M: 3/4
L: 1/4
Q: 1/4=80
K: Dm
%%MIDI gchord c2c2zc
%%MIDI chordprog 24 % guitar
"Dm"z3|"A"z3|"Dm"z3|"C"z3|"F"z3|"C"z3|"Dm"z3|\
%%MIDI gchord c3
"A"z3|
%%MIDI gchord czc
"Dm"z3|"A"z3|"Dm"z3|"C"z3|"F"z3|"C"z3|"A"z3|\
%%MIDI gchord c3
"Dm"z3|]

Listen to the accompanying �le folia.mp3.

7.1. MIDI CONVERSION 113

Let’s now look at a piece that has 4/4 time but a very di�erent rhythm: “�e Girl from
Ipanema”, a famous Brazilian song wri�en by Antônio Carlos Jobim:

X: 1
T: Garôta De Ipanema
T: (The Girl From Ipanema)
C: Antônio Carlos Jobim
M: 4/4
L: 1/8
K: F
P:A
|:"Fmaj7" !p!G2 GE E2 ED|G2 GE EE DG-|"G7"G2 GE EE DG-|
G2 GE EE DF-|"Gm7"F2 FD DD CE-|"Gb7"E2 EC CC B,C-|
[1"Fmaj7"C8|"Gb7"z8 :|[2"Fmaj7"C8 |z8||
P:B
"Gb7"F8-|(3F2_G2F2 (3:2:3_E2F2E2|"B7"_D3 _E-E4-|_E6 z ^G-|
"F#m7"^G8-|(3^G2A2G2 (3^F2G2F2|"D7"E3 ^F-F4-|^F6 z A-|
"Gm7"A8-|(3A2B2A2 (3:2:3G2A2G2|"Eb7"F3 G-G4-|G4 (3z2A2B2|
"Am7"(3c2C2D2 (3E2F2G2|"D7"^G3 A3 z2|"Gm7" (3B2B,2C2
(3D2E2F2|"C7" ^F3 G3 z2 ||
P:C
"Fmaj7"G3 E EE DG-|G2 GE- EE DG-|"G7"G2 GE EE DG-|G2 GE EE DA-|
"Gm7"A2 AF FF Dc-|"Gb7" c2 cE (3E2E2D2|"Fmaj7" E8-|E2 z6|
P:D
z8|]

When converted to MIDI, it sounds pathetic. . . a bossa nova has a completely di�erent
rhythm. We need to specify another fcz sequence that corresponds to a bossa nova. Let’s
insert these lines a�er the P:A �eld:

%%MIDI program 67 % Baritone Sax

%%MIDI gchord fzcffczc % bossa nova (approximate)

%%MIDI chordvol 30

%%MIDI bassvol 30

%%MIDI chordprog 25 % Steel String Guitar

%%MIDI bassprog 25

and this one immediately following the P:D �eld:

%%MIDI gchord c2

Reconverting to MIDI we now have a bossa nova worth its salt: garota.mp3.

7.1.11 New Accompaniment Chords

�e %%MIDI chordname directive allows us to change the notes of an accompaniment chord,
or de�ne new chords. �e syntax is:

%%MIDI chordname 〈chord name〉 〈n1〉 〈n2〉 〈n3〉 〈n4〉 〈n5〉 〈n6〉
where “chord name”’ is a name such as those given in Section 7.1.10 (page 111), 〈n1〉 is the
chord fundamental and and the other notes (up to 6) are expressed as semitones above the
fundamental.

�ese lines de�ne the chords “4” and “5+”:

114 CHAPTER 7. PLAYING

%%MIDI chordname 4 0 5 7 12 % e.g. C F G c

%%MIDI chordname 5+ 0 4 8 12 % e.g. C E ^G c

Now we can apply these new chords to any note: “C4”, “G5+” and so forth.

7.1.12 Customising Beats

MIDI �les usually sound arti�cial and expressionless, but there are several ways to improve
them. �e %%MIDI beatstring 〈fmp〉 directive provides a way of specifying where the
strong, medium and weak stresses are placed within a bar.

f indicates a strong beat, m a medium beat, and p a so� beat. For example, let’s consider
an Irish jig, which has a 6/8 time. �e corresponding fmp sequence would be fppmpp.

To �ne-grain the volume of the single notes in a measure, the %%MIDI beat 〈vol1〉
〈vol2〉 〈vol3〉 〈pos〉 directive can be used. vol1, vol2, and vol3 specify the volume of
notes that fall on a strong, medium, and weak beat, while pos indicates the position of strong
beats in the measure. abc2midi provides default values for all volume speci�ers such as !p!
or !ff!.

�e following example is an Irish jig:

X:1
T:The Swallowtail Jig
R:Jig
M:6/8
L:1/8
Q:180
K:D
%%MIDI program 1 22
E/F/|
% flattish
%%MIDI beat 105 95 80 1
"Em"GEE BEE |GEG BAG |"D"FDD ADD |dcd "Bm"AGF|
"Em"GEE BEE |GEG B2c |"D"dcd "Bm"AGF|"Em"GEE E2 E/F/|
% more swing
%%MIDI beat 105 90 60 3
"Em"GEE BEE |GEG BAG |"D"FDD ADD |dcd "Bm"AGF|
"Em"GEE BEE |GEG B2c |"D"dcd "Bm"AGF|"Em"GEE E2 B|
%%MIDI beat 105 95 80 1
"Em"Bcd e2 f|e2 f edB|Bcd e2 f |edB "D"d2 c|
"Em"Bcd e2 f|e2 f edB|"D"dcd "Bm"AGF|"Em"GEE E2B|
%%MIDI beat 105 90 60 3
"Em"Bcd e2 f|e2 f edB|Bcd e2 f |edB "D"d2 c|
"Em"Bcd e2 f|e2 f edB|"D"dcd "Bm"AGF|"Em"GEE E2z|]

that converts into this MIDI �le: swallowtail.mp3. Note how the di�erent parts have less or
more swing.

To remove temporarily the emphasis programmed with %%MIDI beat, use the %%MIDI

nobeataccents directive. To resume it, use %%MIDI beataccents.

7.1.13 Arpeggios

In addition to fcz sequences, we can also specify ghijz sequences that allow us to play the
individual notes comprising the accompaniment chord. �is way, we can play broken chords

7.1. MIDI CONVERSION 115

or arpeggios.
�e new codes ghijGHIJ reference the individual notes, starting from the lowest note of

the chord. For example, for the C major chord, g refers to C, h refers to E and i refers to
G. Uppercase le�ers refer to the same notes one octave lower, z to a rest.

�e following example plays the C major chord as an arpeggio of CEGE:

%%MIDI gchord ghih

Furthermore, we can use fcz and ghij sequences together, like fcbghijGHIJz.
Another way to play chords as arpeggios is the %%MIDI chordattack directive. When

followed by a number 〈n〉 greater than 0, it delays each note by 〈n〉MIDI time units (a quarter
note is 480 MIDI units). Using %%MIDI randomchordattack 〈n〉 varies the delay of each note
randomly between 0 and 〈n〉.

7.1.14 Broken Rhythm

A typical rhythm of traditional Irish music is the hornpipe, which consists of series of do�ed
notes (broken rhythm):

X: 1
T: Broken rhythm
M: 2/4
L: 1/8
K: C
C>D E>F | G>A B>c | c>d e>f | g>a b>c' |
c'>b a>g | f>e d>c | c>B A>G | F>E D>C |

Writing a piece this way can be tedious. �ere is a shortcut, though: adding the R:hornpipe
�eld will instruct abc2midi to set the broken rhythm automatically. �is e�ect will only work
if the note length is set to 1/8.

Let’s rewrite the scale:

X: 1
T: Broken rhythm
R: hornpipe
M: 2/4
L: 1/8
K: C
CD EF | GA Bc | cd ef | ga bc' |
c'b ag | fe dc | cB AG | FE DC |

�is is the resulting MIDI �le is: broken.mp3.

b Note

Note that abc2midi plays the notes in a di�erent way than they are notated. For in-
stance, A>B should be played as A3/2 B/2 but is actually played as A4/3 B2/3. �at
is, instead of a ratio 3:1 abc2midi employs a ratio 2:1. �e rationale (pun unintended)
is that 2:1 is the way hornpipes are approximately played.

116 CHAPTER 7. PLAYING

�is behaviour can be reversed to normal with the %%MIDI ratio 3 1.

7.1.15 Drum Patterns

In addition to accompaniment chords, we can add a percussion accompaniment to our music
with the %%MIDI drum directive, which has a syntax somewhat similar to %%MIDI gchord.

�e %%MIDI drum directive is followed by a sequence of dz, where d represents a per-
cussion beat and z , predictably, a rest. A�er the sequence, we write the codes for the desired
percussion instruments (see Appendix A.8.2, page 184) and their volumes expressed as num-
bers from 0 to 127.

A drum accompaniment is turned on with %%MIDI drumon and turned o� with %%MIDI

drumoff. �e following tune has a bass drum and hi-hat accompaniment:

X: 1
M: 4/4
L: 1/4
K: C
% sequence instrument volume
%%MIDI drum dddd 36 46 36 46 80 100 80 100
% bass drum 1, open hi-hat
%%MIDI drumon
CDEF|GABc| %%MIDI drumoff
cdef| %%MIDI drumon
gabc'|

Fractional length cannot be speci�ed: to indicate a rhythm such as (3ddd d/d/d/d/ we
must use the d4d4d4d3d3d3d3 sequence.

Here is a fun and more complex example (ri�.mp3):

X: 1
M: 4/4
T: Riff
%%MIDI program 1 25 % Steel String Guitar
Q: 1/4=160
K: C
%%MIDI drum dzddd2dz 35 39 39 35 39 127 80 80 127 80
% Bass Drum 1 + Electric Snare
%%MIDI gchord cccccccc
%%MIDI drumon
"C"CC EE GG AA|_BB AA GG EE|
CC EE GG AA|_BB AA GG EE|
"F"FF AA cc dd|"F7"_ee dd cc AA|
"C"CC EE GG AA|_BB AA GG EE|
%%MIDI gchordoff % no chords
"G"GG BB dd Bd|"F7"FF AA cc Ac|
%%MIDI gchordon % turn chords back on
"C"CC EE GG AA|_BB AA GG EE|
%%MIDI gchord c8
%%MIDI program 1 60 % Brass Section
%%MIDI drumoff

7.1. MIDI CONVERSION 117

!fermata!"C"[C8E8G8c8]|

7.1.16 Percussion Instruments and Drum Mapping

MIDI �les have di�erent channels, which can hold several tracks. Normally, you don’t bother
with these details; all you need to know is that, by default, di�erent voices correspond to
di�erent tracks on the same channel.

In normal MIDI channels, all notes belong to the associated instrument and correspond
to a certain pitch. However, the special MIDI channel 10 has a peculiar feature: each note
is associated with a di�erent percussion instrument, rather than a pitch. Playing that note
actually plays the corresponding percussion instrument; for example, playing A,, produces
a Low Tom beat. Notes and corresponding percussion instrument are listed in Section A.8.2
(page 184).

A convenient directive, %%MIDI drummap, is used to change the mapping between notes
and instruments. Some notes, in fact, are too low or too high; writing runs of these notes
would be a bit awkward. �e following tune has a melody played on the piano, and low-tom,
hi-hat and triangle accompaniment. We only use one note, ^A, conveniently remapped as
needed (percussion.mp3):

X: 1
L: 1/4
Q: 1/4 = 120
V: 1 name="Piano" % normal voice
V: 2 clef=perc name="Low Tom" stafflines=1
%%MIDI channel 10
%%MIDI drummap ^A 45
V: 3 clef=perc name="Open Hi Hat" stafflines=1
%%MIDI channel 10
%%MIDI drummap ^A 46
V: 4 clef=perc name="Open Triangle" stafflines=1
%%MIDI channel 10
%%MIDI drummap ^A 81
K: C
%
[V:1] CDEF |GABc | % Piano
[V:2] ^Az^Az |^Az^Az | % Low Tom
[V:3] z^Az^A |z^Az^A | % Open Hi Hat
[V:4] ^A/^A//^A//^A/^A/^A/^A/^A/^A/|\

^A/^A//^A//^A/^A/^A/^A/^A/^A/| % Open Triangle

118 CHAPTER 7. PLAYING

= 120

Open Triangle

Open Hi Hat

Low Tom

Piano

Note that the %%MIDI channel 10 directive must be wri�en a�er the V: �eld that starts
a new voice.

7.1.17 Portamento

A glide e�ect can be added using the %%MIDI portamento [bass] [chord] 〈n〉 directive,
where 〈n〉 is a number between 0 (no e�ect) and 63 (maximum e�ect).

�e following is the ri� from Impressioni di Se�embre, a great song by Italian progres-
sive rock band PFM. �e �rst repeat has no glide e�ect, while the second repeat mimics the
original Moog glide (impressioni.mp3):

X: 1
T: Impressioni di Settembre (riff)
C: PFM, 1972
M: 4/4
L: 1/8
Q: 1/4=140
K: Dm octave=-1
%
%%MIDI program 1 81
%%MIDI chordprog 80
%%MIDI gchord b4
%%MIDI chordvol 50
%
%%MIDI portamento 0
|:"Dm"D4-DE F2|G A2 c d2 f e-|"C"e d c2 g4-|gfed- dcg2|
"G"f e2 d2 c =B2-|=B A G3 BG A-|"Dm"A d- d6-|d8
%%MIDI portamento 60
:|
D8-|D8|]

%%MIDI noportamento turns o� the e�ect.

7.1.18 Drone

Bagpipe, medieval and other kinds of music are o�en accompanied by one or more drone
notes. abc2midi supports drones using these directives:

7.1. MIDI CONVERSION 119

• %%MIDI drone 〈instrument〉 〈pitch1〉 〈pitch2〉 〈vel1〉 〈vel2〉 speci�es
the drone characteristics;

• %%MIDI droneon starts the drone accompaniment;

• %%MIDI droneff stops the drone.

�e parameters of the %%MIDI drone directive are 〈instrument〉, that speci�es the MIDI
instrument for the drone; 〈pitch1〉 and 〈pitch2〉 are the MIDI pitches of the drone notes; 〈vel1〉
and 〈vel2〉 are the MIDI “velocities”, that is the volume, of the drone notes.

�e pitches are not speci�ed as Abc notes, but as standard MIDI pitches. In short, these
are numeric codes (1–127) that correspond to notes, as shown in Table 7.1. To obtain notes
higher or lower than the octave shown in the table, simply add or subtract 12 to the note.

�e default values of %%MIDI drone are 71 (bassoon), 45 (A,,), 33 (A,,,), 80 and 80.

Note A,, ˆA,, B,, C, ˆC, D, ˆD, E, F, ˆF, G ˆG, A,
MIDI pitch 45 46 47 48 49 50 51 52 53 54 55 56 57

Table 7.1: Standard notes and corresponding MIDI pitches.

Let’s put it into practice. �is is Amazing Grace, wri�en in G major with bagpipe drone
accompaniment:

X:1
T:Amazing Grace
M:3/4
L:1/8
Q:40
K:G
%%MIDI gracedivider 16
%%MIDI program 109
%%MIDI drone 109 43 31 70 70
%%MIDI droneon
|z3 z2D|/AG2 B/G/ B2 A|/AG2 FE D2 D|
/AG2 /CB/G/ /CB2 A/B/|d3-d2 B|
d2 B/G/ B2 A|G2 E /ED2 D|
/AG2 B/G/ B2 A|/AG3-G2 |]
%%MIDI droneoff

�e resulting MIDI �le is amazinggrace.mp3.

7.1.19 Global Settings

In a tune collection, the same MIDI se�ings could be shared by all or most tunes. Instead on
inserting the same %%MIDI lines in each tune, it is possible to place them at the beginning of
the �le; the parameters will apply to all tunes. �ese are called “global se�ings”.

�ese parameters can be:

• %%MIDI C

• %%MIDI nobarlines

120 CHAPTER 7. PLAYING

• %%MIDI barlines

• %%MIDI fermatafixed

• %%MIDI fermataproportional

• %%MIDI ratio

• %%MIDI chordname

• %%MIDI deltaloudness

Obviously, these parameters may be overridden by %%MIDI lines within each tune.

7.2 Di�erences and Incompatibilities

Unfortunately, abcm2ps/abc2svg and abcMIDI are not completely compatible with each
other, because the scorewriters accept a more extended syntax. Moreover, it should be pointed
out that some indications only make sense in a printed score. Consequently, when writing
music in Abc bear in mind that something could not work as expected. A few things that do
not work in abcMIDI are:

• nested tuples;

• “grace chords” (Section 2.1.10, page 23) are not played correctly;

• repeats indications like |:: ::|;

• P: �elds cannot be inserted within repeats;

• several decorations (e.g. tremolos) don’t produce audible e�ect;

• if a system change occurs in the middle of a piece, abc2midi gets lost and generates
an incorrect MIDI �le;

• repeated sequences (Section 4.1.10, page 72) are not played;

• . . . there may be others.

Because of these small incompatibilities, we have the problem of writing music that can
be converted by both abcm2ps and abc2midi. In theory, we should write two source �les,
one for abcm2ps and another for abc2midi: this is obviously unacceptable. An alternative is
to use the abcpp preprocessor, which will be explained in Section 10.5 (page 153).

� � � � �

Chapter 8

Advanced Customisation

Sometimes, it could be desirable to use musical features that are not directly supported
in Abc; or to modify the output in speci�c ways. �is is possible, since abcm2ps and

abc2svg provide directives that modify or extend their functionality. For example, users can
rede�ne note shapes, add colours and decorations, and implement new features. In general,
users can add or modify PostScript and/or SVG routines for output customisation.

abcm2ps has full PostScript customisation, but it also understands some SVG. Simmetri-
cally, abc2svg has full SVG customisation, but it also understands some PostScript. It must
be stressed that these extensions are not part of the Abc notation, and are speci�c to abcm2ps

and abc2svg only!

8.1 Font Directives, Revisited (abc2svg)

In Section 4.1.5 (page 65), we learnt how to change fonts. Actually, font directives support an
extended syntax:

%%*font 〈font name〉 [style/weight] [encoding] [size] [arguments]

where:

• %%*font is one of the several font changing directives like %%titlefont, %%textfont,
etc.;

• 〈font name〉 can also be an URL, which can point to a locally installed font or to a font
available on the web. For example:
%%textfont url(http://example.org/fonts/coolfont.woff)

%%textfont url(/usr/share/fonts/coolfont.otf)

• [style/weight] can be one of the strings italic, bold, or normal. �ese strings can be
separated from the font name by a hyphen or a space. �e string normal removes both
style and weight;

• [encoding] is not used by abc2svg;

• [size] is the font size in pixels, or * that means “keep the previous font size”.

• [arguments] can be one of the following strings:

– box, which draws a box around the text, or nobox to stop drawing text boxes;

121

122 CHAPTER 8. ADVANCED CUSTOMISATION

– class=〈class name〉 sets the text using a CSS class de�ned with %%beginml . . .
%%endml;

– padding=〈int〉 sets the text padding in pixels;
– wadj=〈adjustment〉 sets the text width adjustment; the parameter can be none,
spacing, or glyph. �is parameter only works when using abc2svg in the com-
mand line.

It looks quite complicated, so let’s see a pre�y complete example:

% definition of 'redtext' and 'bluetext' classes
%%beginsvg
<style>
.redtext color:red;
.bluetext color:blue; outline: 3px solid;
outline-color:red; outline-offset: 5px;

</style>
%%endsvg

%%titleleft 1
%%titlefont * 32 class=bluetext

X: 1
T: Framed blue title
K: C
%%textfont serif 18
%%text This is simple text
%%textfont serif bold 24 nobox class=redtext
%%text This is unboxed, bold red text
%%textfont * normal 22 box padding=25
%%text Framed and padded text
%%textfont url(/usr/share/fonts/MuseJazzText.otf) nobox 20
%%text MuseJazz is a nice font

Framed blue title
This is simple text

This is unboxed, bold red text

Framed and padded text

MuseJazz is a nice font

8.2 New PostScript and SVG Routines

�e %%ps directive, followed by code in the PostScript language, adds new routines or rede-
�nes existing ones. For example, the following commands rede�ne abcm2ps’ internal routine
dlw that causes all lines in the score to be drawn thinner:

8.2. NEW POSTSCRIPT AND SVG ROUTINES 123

%%ps /dlw
%%ps {0.3 setlinewidth} bind def % default: 0.7

so the score looks be�er at high values of %%pagescale. �is extension, however, will not
work in abc2svg.

When writing several lines of PostScript code, using the sequence %%beginps. . . %%endps
is recommended. In addition to PostScript, commands in SVG can also be speci�ed using
%%beginsvg. . . %%endsvg. Whenever possible, you should write both SVG and PostScript
commands to make the source compatible with both abc2svg and abcm2ps.

8.2.1 De�ning New Symbols

�e %%deco directive adds new expression symbols, using PostScript/SVG routines de�ned
by abcm2ps and abc2svg or new ones wri�en by the user. �e syntax is:

%%deco 〈name〉 〈type〉 〈function〉 〈height〉 〈wl〉 〈wr〉 〈string〉
where:

• 〈name〉 is the name of the new symbol, without the exclamation marks;

• 〈type〉 is an integer number that speci�es the symbol type. Values from 0 to 2 indicate
a symbol near the note and within the sta�; from 3 to 5, near the note but outside the
sta�; 6 and 7, expressions linked to the sta� (like dynamic marks); 8, long decorations;
10, colour. To give an idea of symbol positioning, here is a listing:

– 0: like !tenuto! or staccato dot;
– 1: like !slide!;
– 2: like !arpeggio!;
– 3: generic expressions;
– 4: below the sta�;
– 5: like !trill(! or !trill)! (abcm2ps only);
– 6: generic;
– 7: like long dynamics symbols;
– 8: like long dynamics symbols;
– 10: note colour.

• 〈function〉 is the name of the PostScript/SVG routine that draws the symbol;

• 〈height〉 expression height in points;

• 〈wl〉 and 〈wr〉 are not used;

• �nally, 〈string〉 is an optional text string.

Let’s have a look at an example taken from the �le deco.abc supplied with abcm2ps. We
will add a few new symbols for dynamics using the prede�ned pf routine:

124 CHAPTER 8. ADVANCED CUSTOMISATION

% name type function height wl wr string
%%deco fp 6 pf 20 0 0 fp
%%deco (f) 6 pf 20 0 0 (f)
%%deco (ff) 6 pf 20 0 0 (ff)
X: 1
T: New symbols
K: C
!fp!CDEF GABc|CDEF !(f)!GABc|!(ff)!CDEF !ff!GABc|

New symbols

fp (f) (ff)

%%deco lines implement three new symbols: !fp!, !(f)!, and !(ff)!.
Let’s see another example. �e following source adds three new symbols: one note-linked

and two sta�-linked, one above the sta� and one below. �e �rst symbol !tu! is a triangle-
shaped staccato symbol. !tu! uses the new routine newdot. �e other symbols are !rtoe!

and !ltoe! which use the routine toe and add a symbol similar to a ^ above and below the
sta�.

%%beginsvg
<defs>
% triangle
<path id="newdot" class="fill"
d="m -2 2 l 2 5 l 2 -5 l -4 0" />

% upside-down V
<path id="toe" class="stroke"
d="m -5 -2 l 5 -5 l 5 5" />

</defs>
%%endsvg

% name type function height wl wr string
%%deco tu 0 newdot 5 0 0
%%deco rtoe 6 toe 5 0 0
%%deco ltoe 3 toe 5 0 0

X: 1
K: C
!tu!C!tu!D!tu!E!tu!F GABc|!ltoe!c'!rtoe!bag .f.e.d.c|!ltoe!C4 z4|]

8.3. NOTE MAPPING 125

8.3 Note Mapping

�e appearance and position of notes can be programmed using the powerful %%map directive.
New shapes can be programmed with %%beginps. . .%%endps and %%beginsvg. . .%%endsvg.

Note mapping matches one or more notes with new note shapes that are de�ned within
a named set, called a map. A voice can then be matched with a map; notes belonging to the
voice will be typeset using the new shapes and/or positions.

�e syntax is:
%%map 〈map name〉 〈mapped note〉 [heads=]〈glyph names〉 [print=]〈note〉 [color=]〈#rrggbb〉

where:

• 〈map name〉 is a text string;

• 〈mapped note〉 is the Abc name of a note, complete with accidentals if needed. �e note
name can also be *, meaning “all notes”;

• [heads=]〈glyph names〉 de�nes a set of glyph names. Glyphs are de�ned as PostScript
or SVG paths;

• [print=]〈note〉 indicates that 〈mapped note〉 will be typeset as 〈note〉 (that is, on a dif-
ferent line or space);

• [color=]〈#rrggbb〉 de�nes note colours.

It sounds complicated, but some examples will hopefully clarify how %%map works. Let’s
de�ne two maps; one that typeset notes heads C D E in green, and another that typeset all
note heads in red:

X:1
M:C
L:1/4
K:C
% first map: only C D E note heads typeset in green
%%map color_green C color=#00ff00
%%map color_green D color=#00ff00
%%map color_green E color=#00ff00
% second map: all note heads printed in red
%%map color_red * color=#ff0000
%
[V:1][I:voicemap color_green] "^V:1 is mapped to color_green"CDEF | GABc |
[V:2][I:voicemap color_red] "^V:2 is mapped to color_red"CDEF | GABc |
% mapping continues
[V:1] cBAG | FEDC |
[V:2] cBAG | FEDC |

V:1 is mapped to color_green

V:2 is mapped to color_red

126 CHAPTER 8. ADVANCED CUSTOMISATION

In the next example we de�ne a new cross-shaped note head, and we map some notes
to new positions on the sta�. �is is a simple implementation of percussion notes, that are
notated using peculiar note heads and positions.

%%beginsvg
<defs>
<path id="x_head"
d="m-3 -3l6 6m0 -6l-6 6"
class="stroke" style="stroke-width:1.2"/>

</defs>
%%endsvg

% glyph is referred to as "x_head"

X:1
M:4/4
L:1/4
%%score (1 2)
K:C clef=perc
%
% Note ^A, (hi-hat) will have its head replaced by
% the 'x_head' glyph, and it will be typeset as 'g'
%%map drum ^A, print=g heads=x_head
% Note D, (snare) will be typeset as 'c'
%%map drum D, print=c
% Note C, (bass drum) will be typeset as 'F'
%%map drum C, print=F
%
[V:1] [I:voicemap drum][I:MIDI channel 10]
^A,/^A,/[^A,D,]/^A,/ ^A,/^A,/[^A,D,]/^A,/ |
[V:2] [I:voicemap drum][I:MIDI channel 10]
C,xC,x |

As you can see, notes ^A, D, C, are typeset as g c F; besides, ^A, has a cross-shaped

note head. �e new note positions are standard in percussion notation; further, the I:MIDI

inline �elds map the notes to percussion instruments (Section 7.1.16, page 117).
Summing up, the example above is displayed correctly and it also plays correctly when it

is converted to MIDI.

8.4 Renaming Symbols

For historical reasons, several symbols have a long name; for instance, !invertedfermata!.
We can de�ne abbreviations employing the method we learnt in the previous section:

%%deco fmt 3 hld 12 7 7 % !fmt! = !fermata!
%%deco lmd 3 lmrd 10 2 2 % !lmd! = !lowermordent!

8.5. ACCOMPANIMENT CHORDS IN ITALIAN NOTATION 127

%%deco umd 3 umrd 10 2 2 % !umd! = !uppermordent!
%%deco , 3 brth 0 1 20 % !,! = !breath!
%%deco lphr 3 lphr 0 1 1 % !lphr! = !longphrase!
%%deco mphr 3 mphr 0 1 1 % !mphr! = !mediumphrase!
%%deco sphr 3 sphr 0 1 1 % !sphr! = !shortphrase!
%%deco ifmt 3 hld 12 7 7 % !ifmt! = !invertedfermata!
%%deco trn 3 turn 10 0 5 % !trn! = !invertedturn!
%%deco itrn 3 turnx 10 0 5 % !itrn! = !invertedturnx!
%%deco mrd 3 lmrd 10 2 2 % !mrd! = !mordent!
%%deco arp 2 arp 12 10 0 % !arp! = !arpeggio!
%%deco inv 32 0 0 0 0 % !inv! = !invisible!

We have renamed the symbol de�nitions that are de�ned in one of abcm2ps source �les
(deco.c).

Z Warning

If we rename a symbol, abc2midi can’t recognise it any more. Usually this is not a
problem, since many symbols only produce printed output. However, other symbols
like !arpeggio! also produce MIDI output. Hence, in such cases we should use U: to
rede�ne the symbol.

8.5 Accompaniment Chords in Italian Notation

By default, accompaniment chords are typeset using English note names. Chord names can
be rede�ned using the PostScript commands (abcm2ps) or the %%chordnames directive (abc-
2svg).

�e following code is a format �le for abcm2ps that rede�nes accompaniment chords
using Italian note names:

% itachords.fmt
%
% Displays guitar chords using Italian note names.
% Written by Jean Fran\c cois Moine
% License: GNU GPL 2.

beginps
/gcshow{
dup 0 get
dup dup 65 ge exch 71 le and{
65 sub[(La)(Si)(Do)(Re)(Mi)(Fa)(Sol)]exch get show
dup length 1 sub 1 exch getinterval

} if show}!
/agcshow{

dup 0 get 0 get
dup dup 65 ge exch 71 le and{
65 sub[(La)(Si)(Do)(Re)(Mi)(Fa)(Sol)]exch get show
dup length 1 sub 1 exch getinterval

} if arrayshow}!

128 CHAPTER 8. ADVANCED CUSTOMISATION

endps

% end of file itachords.fmt

If we add -F itachords to the command line, the usual scale will be typeset with ac-
companiment chords in Italian:

X:1
L:1/4
K:Ebmaj
M:4/4
"Eb"EFGA|"Bb"Bcde|"Cm"CDEF|"Gm"GABc|

Mi Si Dom Solm

4
4

Unfortunately, this method will not accept UTF-8 characters.
abc2svg supports the %%chordnames directive that also accepts UTF-8 characters. For

instance, chord names in French can be entered as:

%%chordnames Do,Ré,Mi,Fa,Sol,La,Si

8.6 Adding Text Fonts (abcm2ps)

Standard Ghostscript fonts are usually enough for most users. However, to add a special touch
to our scores, more fonts can be added. Recent versions of Ghostscript support PostScript
(.pfb), OpenType (.otf), and TrueType (.ttf) fonts.

b Note

A few notes before we begin:

1. the following procedure will not work on the Android platform, which lacks
Ghostscript support;

2. Ghostscript does not use system fonts, i.e. the ones that the operating system
provides to all other applications. You will have to add new fonts following the
procedure outlined in this section;

3. the procedure was tested on GNU/Linux Mint 18.3 (Ghostscript 9.26), Windows
7 and Windows 10 (Ghostscript 9.55 installed in C:\gs\gs9.54). You will need
root/administrator privileges.

An excellent site boasting a wide collection of free and high-quality PostScript and True-
Type fonts is h�p://moorstation.org/typoasis/typoasis1.htm. Under the “Designers” section,

http://moorstation.org/typoasis/typoasis1.htm

8.6. ADDING TEXT FONTS (ABCM2PS) 129

you’ll �nd several pages devoted to font designers; each page o�ers many fonts for download.
Select Dieter Ste�mann’s page.

Let’s see how to add a new font called Holla Script, downloaded as Holla.zip. Obviously,
the procedure will be very similar with other fonts.

Unzip the archive and copy HollaScript.pfb (the TrueType version, HollaScript.ttf,
will also work) to one of the directories where Ghostscript searches for fonts. Supposing that
you installed Ghostscript (let’s assume version 9.55) and its fonts in default locations, such
directory is:

• Windows: C:\gs\gs9.54\lib

• GNU/Linux: /usr/share/fonts/

To list all available search directories, we can issue the command:

gs -h
GPL Ghostscript 9.26 (2018-11-20)

...

Search path:

/usr/share/ghostscript/9.26/Resource/Init :

/usr/share/ghostscript/9.26/lib :

/usr/share/ghostscript/9.26/Resource/Font :

/usr/share/ghostscript/fonts : /var/lib/ghostscript/fonts :

/usr/share/cups/fonts : /usr/share/ghostscript/fonts :

/usr/local/lib/ghostscript/fonts : /usr/share/fonts

...

Subdirectories are also searched by Ghostscript.
Now edit Ghostscript’s font list, which is a simple text �le:

• Windows: C:\gs\gs9.54\lib\Fontmap

• GNU/Linux: /var/lib/ghostscript/fonts/Fontmap

Note that this �le does not have a .txt extension. If the �le is missing, create a new one.
Move to the bo�om of the �le and add this line:

/HollaScript (HollaScript.pfb) ;

which de�nes a new font called HollaScript. If you wish, you can also de�ne an alias, i.e.
an alternate name for the same font adding a new line:

/Jazz /HollaScript ;

We are now ready to use the HollaScript font in Abc �les. First of all, we will have to
declare it using the %%font directive followed by the font name. Look at this:

%%font HollaScript
%%titlefont HollaScript 24

130 CHAPTER 8. ADVANCED CUSTOMISATION

%%textfont HollaScript 18
%%composerfont Jazz 16 % alias
%%vocalfont Jazz 16
%%gchordfont Jazz 18
X: 1
T: Test: HollaScript font (Jazz)
L: 1/4
K: C
%
"C"CDEF|"G"GA"G7"Bc|"C"cBAG|"G"FEDC|"C"C4|]
w: Do Re Mi Fa... |||||
%%text ABCDEFGHIJKLMNOPQRSTUVWXYZ
%%text abcdefghijklmnopqrstuvwxyz 1234567890

Test: HollaScript font (Jazz)

Do Re Mi Fa...

C G G7 C G C

4
4

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz 1234567890

Bear in mind that some fonts available on the Internet are not complete (they may only
have capital le�ers, or miss some characters); not all are free; and not all are of good quality.

8.7 Adding Text Fonts (abc2svg)

Adding text fonts for abc2svg is much simpler; besides, most fonts will automatically work
for abcm2ps too, without the complex installation procedure explained in the previous sec-
tion. Only OpenType .otf fonts apply.

Let’s download and install the following fonts:

• Gadelica, h�p://www.leabhair.ie/Gadelica.zip

• QT Arabian, h�ps://www.ctan.org/tex-archive/fonts/qualitype/

• Urbanist Light Italic, h�ps://github.com/coreyhu/Urbanist

Install the fonts as usual (GNU/Linux: just copy them to /usr/share/fonts), then de-
clare their names in in %%font lines. Beware: you must specify the real name, as it appears in
the font manager of your operating system, not just the �le name. If the font name is made
of more than one word, it must be enclosed in quotes:

% Fonts Gadelica.otf, QTArabian.otf, and
% Urbanist-LightItalic.otf are installed in /usr/share/fonts

%%font Gadelica

http://www.leabhair.ie/Gadelica.zip
https://www.ctan.org/tex-archive/fonts/qualitype/
https://github.com/coreyhu/Urbanist

8.8. USING SMUFL FONTS 131

%%font QTArabian
%%font "Urbanist Light Italic"

%%textfont Gadelica 24
%%text This is Gadelica
%%textfont QTArabian 24
%%text This is QTArabian
%%textfont Urbanist Light Italic 24
%%text This is Urbanist Light Italic

This is Gadelica

This is QTArabian

This is Urbanist Light Italic

A useful font set is TeX Gyre, h�ps://ctan.org/pkg/tex-gyre. It’s an implementation of
most standard PostScript fonts in OpenType format, compatible with both abcm2ps and abc-
2svg. In particular, the TeX Gyre implementation of web-safe fonts lets abc2svg and abcm-

2ps typeset identical output.

8.8 Using SMuFL Fonts

By default, abcm2ps and abc2svg use their own libraries of symbols (glyphs) to draw notes
and other music elements. Generally, these glyphs look quite good, but there are a few ex-
ceptions; abcm2ps piano symbols, for instance, are quite rudimentary.

To change the appearance of our scores, we can replace the glyphs using a SMuFL-
compliant music font. SMuFL stands for Standard Music Font Layout; it is a speci�cation
designed to provide a standard way of mapping musical symbols to characters. Please note
the di�erence between a text font, such as HollaScript in the previous section, and a music

font that changes glyphs.
Some free and open source SMuFL compliant fonts are:

• Bravura, h�ps://github.com/steinbergmedia/bravura

• Petaluma, h�ps://github.com/steinbergmedia/petaluma; a Jazz style font

• Sebastian, h�ps://github.com/�retlow/sebastian

• Leland, h�ps://github.com/MuseScoreFonts/Leland

Some of these fonts are available in two versions: one is used to typeset music glyphs in
the score, the other is used to typeset music glyphs in text. For example, we have Bravura
and BravuraText, Sebastian and SebastianText. �ese fonts are released in OpenType format;
�le extension is .otf.

Let’s try Bravura; the procedure is the same for other fonts. Download Bravura.otf

and install it in one of Ghostscript search directories, as explained in Section 8.6; adding the
font in the Fontmap �le is not required. �e %%musicfont directive instructs abcm2ps and
abc2svg to use the new glyphs provided by Bravura:

https://ctan.org/pkg/tex-gyre
https://github.com/steinbergmedia/bravura
https://github.com/steinbergmedia/petaluma
https://github.com/fkretlow/sebastian
https://github.com/MuseScoreFonts/Leland

132 CHAPTER 8. ADVANCED CUSTOMISATION

%%pagescale 1.2
%%musicfont Bravura

X: 1
T: Using the Bravura music font
M: 4/4
L: 1/4
K: C
%%text New note heads
C4 | =C2 _C ^C | [CDEFGA]2 [CDEFGA] [GABcde] |
%%text Some decorations
C !segno!E !invertedturn!G !turn!c | \
!ped!C !fermata!E !ped-up!G !^!c | \
!mordent!C !uppermordent!E !D.S.!G !coda!c |

Using the Bravura music font

New note heads

 4
4

Some decorations

 D.S.

As you can see, note heads and decorations are di�erent than the default glyphs.
Using abcm2ps, not all symbols are replaced by the SMuFL font; for example, dynamics

decorations like !p! are normally implemented as strings. To rede�ne these missing glyphs,
we can use the smufl.fmt format �le, available at the Abc 2 home page. To use smufl.fmt,
we declare a SMuFL-compliant font before loading it:

%%musicfont Bravura
%%format smufl

then all new glyphs will be available using the speci�ed SMuFL font.

� � � � �

Chapter 9

Abc and MusicXML

9.1 Introducing MusicXML

Let’s suppose we want to exchange our music wri�en in Abc with a friend who uses a
commercial music program. Most probably, our friend will be unable to load our Abc

sources into their program. �is is a typical problem that plagues people using di�erent pro-
grams running on di�erent operating systems.

Besides, occasionally we may need to use a di�erent music typese�er. Although abcm-

2ps and abc2svg produce excellent scores most of the time, in some cases other programs
produce be�er-looking results. �e same holds for MIDI output.

In these cases, MusicXML is a possible solution. MusicXML is a �le format that was de-
signed for the exchange of sheet music �les between music applications. Most major pro-
grams support it, including market leaders Sibelius® and Finale®, and popular freeware Finale
NotePad. MuseScore and LilyPond, the most powerful scorewriters in the open source world,
are a precious alternative.

abc2xml.py and xml2abc.py are the gateway betweenAbc and MusicXML-enabled pro-
grams. �e abc2xml.py translator supports nearly all elements of the Abc language, imple-
ments some directives, and provides some useful extensions. Similarly, xml2abc.py imple-
ments the parts of MusicXML that are also included in Abc; the former, in fact, supports
more features than Abc. While you should not expect to obtain a perfect conversion all the
time, the Abc/MusicXML translators work impressively well: manual customisation of the
resulting �les is usually trivial.

9.2 Using xml2abc-js

Besides abc2xml.py and xml2abc.py, we can use a convenient MusicXML to Abc online
converter called xml2abc-js. It’s a Javascript version of xml2abc.py, available at h�ps:
//wim.vree.org/js/xml2abc-js.html.

Let’s use it to convert one of the MusicXML test �les available here: h�p://www.musicxml.
com/music-in-musicxml/example-set/. Click on the Recordare Editions menu and download
the MusicXML version of one of the provided samples; say, Debussy’s “Mandoline”. Save the
�le as mandoline.xml.

Open the xml2abc-js page, click on the Choose File bu�on and load mandoline.xml.
�e �le will be immediately translated to Abc; the source will be displayed on the le�, the
score will be typeset using abc2svg and displayed on the right.

133

https://wim.vree.org/js/xml2abc-js.html
https://wim.vree.org/js/xml2abc-js.html
http://www.musicxml.com/music-in-musicxml/example-set/
http://www.musicxml.com/music-in-musicxml/example-set/

134 CHAPTER 9. ABC AND MUSICXML

You can now save the source using the save bu�on, and use the Options bu�on to exper-
iment with xml2abc-js’ translation options.

Figure 9.1: Importing and displaying MusicXML �les in xml2abc-js.

9.3 Using abc2xml.py and xml2abc.py

abc2xml.py and xml2abc.py are command line programs that require Python; Windows
users have a .exe version of these programs. �e syntax is:

$ abc2xml.py [switches] -o. file.abc

$ xml2abc.py [switches] -o. file.xml

�e following command, for example, translates a set of MusicXML �les in current direc-
tory into the corresponding Abc sources:

˜/XML$ xml2abc.py -o. *.xml

In plain English: for each .xml �le, xml2abc.py creates the corresponding .abc �le in
the current directory. xml2abc.py also converts compressed MusicXML �les, which have a
.mxl extension.

�is command performs the opposite conversion from .abc to .xml:

˜/Abc$ abc2xml.py -o. *.abc

Omi�ing the -o. switch (output to �les in current directory), output can be redirected.
�is command creates a single Abc �le from .xml �les:

˜/XML$ xml2abc.py *.xml > alltunes.abc

�e above commands work on GNU/Linux and macOS, and possibly on Windows systems
with Bash and Python installed. Alternatively, we can use EasyABC, which can import and
export MusicXML using the translators internally.

9.4. CONVERTING ABC TO MUSESCORE 135

9.3.1 Basic Options

Running abc2xml.py with the -h switch gives a synopsis of its options. �e most useful are:

• -m 〈n1〉 〈n2〉: if given a tune collection, skip 〈n1〉 tunes and read at most 〈n2〉 tunes. By
default, abc2xml.py reads the �rst tune only.

• -p 〈page format〉: specify the page geometry. 〈page format〉 is a set of 7 decimal numbers
that specify the scale, page height, page width, le� margin, right margin, top margin,
and bo�om margin in mm �e numbers are separated by commas, without spaces.
Default values are 0.75,297,210,18,18,10,10 (European A4 paper size).

• -b: break lines at end of line. Equivalent to the I:linebreak <EOL> �eld.

Similarly, running xml2abc.py with -h lists its options. �e most useful are:

• -d 〈N〉: set the L: �eld to 1/〈N〉.

• -n 〈NC〉: set the maximum number of characters per line to 〈NC〉 (default: 100).

• -b 〈NB〉: set the maximum number of bars per line to 〈NB〉.

• -x: don’t output line breaks.

• -p 〈page format〉: set the page geometry. 〈page format〉 works as with abc2xml.py.

Running the translators without switches usually gives good results.
Abc music elements are translated, but only a few directives are:

• %%pagewidth, %%pageheight, %%leftmargin, %%rightmargin, %%score, %%staves,
%%scale, and %%abc-include.

• %%MIDI program and %%MIDI channel (with some limitations), %%MIDI transpose,
%%MIDI drummap.

�ese commands su�ce to produce full-featured MusicXML �les that can successfully
imported in other applications.

9.4 Converting Abc to MuseScore

MuseScore is a multiplatform, free and open source visual scorewriter; it’s one of the most
powerful and high-quality music programs available. Its home page is h�p://musescore.org/.

Since MuseScore can read MusicXML, it can be used to typeset music originally wri�en
in Abc. In the following example we convert scale1.abc to MusicXML, run the resulting
�le through MuseScore, and produce a PDF �le:

$ abc2xml.py -o. scale1.abc
-- decoded from utf-8

-- skipped header: (field X,1)

./scale1.xml written

-- done in 0.02 secs

http://musescore.org/

136 CHAPTER 9. ABC AND MUSICXML

$ musescore scale1.xml -o scale1.pdf
initScoreFonts 0x30d33c0

convert <scale1.xml> to <scale1.pdf>

setFirstInstrument: no instrument found for part 'P1'
˜$ _

As you can see, we typeset the score in the command line using MuseScore instead of
abcm2ps. Alternatively, we can run MuseScore interactively and load the MusicXML source
for manual customisation and PDF export.

MuseScore can also convert to other formats: png, svg, wav, flac, ogg, mp3, mid, xml,
and mxl.

9.5 Converting Abc to Lilypond

Lilypond is a very powerful, free and open source music typese�er. It employs its own text-
based music notation language, and produces professional grade sheet music. While Abc is
somewhat specialised in folk music, Lilypond is widely used for notating classical music. Its
home page is h�p://lilypond.org/.

Lilypond notation can become quite complex, especially for orchestral scores. Writing
music in Abc notation is much simpler; conversion to Lilypond format can be bene�cial for
both Abc and Lilypond users. Lilypond includes a utility called abc2ly that converts Abc
�les to Lilypond (.ly) �les, but this program does not work very well with multivoice �les.

In this case, using MusicXML as an intermediate format produces be�er results. We can
choose between two MusicXML to Lilypond converters: musicxml2ly, included in the Lily-
pond package; and xml2ly, part of the libmusicxml project, h�p://libmusicxml.sourceforge.
net. xml2ly is currently the best translator, but you may have to compile it yourself.

�e following commands convert scale1.abc to MusicXML, run the resulting �le through
musicxml2ly to convert it to Lilypond format, then run Lilypond to produce a PDF �le:

$ abc2xml.py scale1.abc > scale1.xml
-- decoded from utf-8

-- skipped header: (field X,1)

-- done in 0.01 secs

$ musicxml2ly scale1.xml
musicxml2ly: Reading MusicXML from scale1.xml ...

musicxml2ly: Converting to LilyPond expressions...

musicxml2ly: Output to `scale1.ly'
$ lilypond scale1.ly
GNU LilyPond 2.18.2

Processing `scale1.ly'
...lots of messages...

Converting to `./scale1.pdf'...
Success: compilation successfully completed

$ _

To convert Abc to MusicXML to LilyPond using xml2ly, the commands are:

http://lilypond.org/
http://libmusicxml.sourceforge.net
http://libmusicxml.sourceforge.net

9.6. CONVERTING ABC TO VEROVIO 137

$ abc2xml.py scale1.abc > scale1.xml
-- decoded from utf-8

-- skipped header: (field X,1)

-- done in 0.01 secs

$ xml2ly -aofn -q -lpv "2.18.2" scale1.xml
$ lilypond scale1.ly
GNU LilyPond 2.18.2

Processing `scale1.ly'
...lots of messages...

Converting to `./scale1.pdf'...
Success: compilation successfully completed

$ _

9.6 Converting Abc to Verovio

Verovio is a free and open source library for engraving music coded in MEI format. MEI
stands for Music Encoding Initiative; it’s an alternative to MusicXML. More details at the
Verovio home page, h�ps://www.verovio.org.

Verovio can be used in several ways; we only need its command line interface. Verovio
accepts MusicXML input; basic Abc input is also supported, but many features are still miss-
ing. Output is in SVG format, so we will also need the rsvg-convert program that turns
SVG �les to PDF. rsvg-convert is part of the libRSVG library, included in most GNU/Linux
distributions.

To turn an Abc �le (single tune only) to PDF using Verovio, the commands are:

$ abc2xml.py file.abc > file.xml
$ verovio -a -f xml --footer none file.xml -o file
Output written to file_001.svg.

Output written to file_002.svg.

Output written to file_003.svg.

$ rsvg-convert -f pdf file*.svg -o file.pdf
$ _

A simpler way to convert MusicXML to PDF is the Verovio web converter h�ps://www.
verovio.org/musicxml.html. Load a MusicXML �le, press the “Convert to MEI” bu�on, then
save the PDF from the “PDF” bu�on in the le�-hand menu.

b Note

Remember,Abc is just a notation and is not tied to a speci�c application. We can choose
between �ve di�erent programs to typeset our music!

9.7 abc2xml.py Extensions

Since MusicXML supports more musical features than Abc, abc2xml.py provides a few ex-
tensions that MusicXML applications can exploit. �e following Abc sources must be con-
verted to MusicXML and fed to applications like MuseScore to typeset the �nal output.

https://www.verovio.org
https://www.verovio.org/musicxml.html
https://www.verovio.org/musicxml.html

138 CHAPTER 9. ABC AND MUSICXML

9.7.1 Tremolo

Tremolo indications !/-! !//-! !///-! are similar to !trem1! !trem2! !trem3! !trem4!

that are supported by abcm2ps and abc2svg, but are placed di�erently:

X: 1
L: 1/4
M: none
K: C
%
!/-!CD !//-!EF !///-!GA !/!C !//!D !///!E|

�at is, in front of note pairs instead of between notes pairs. Using MuseScore or Verovio
to convert the corresponding MusicXML �le, we obtain the following score:

Unfortunately, abc2midi does not support any of the tremolo decorations. MIDI output,
however, can be made by MuseScore.

9.7.2 Percussion Maps

As we know, the perc clef type is used for percussion notes. To specify percussion instru-
ments and note positions, abc2xml.py provides a new directive to implement percussion
maps:

%%percmap 〈note〉 [mapped note] 〈percussion〉 [note shape]

where:

• 〈note〉 is the Abc name of a note (e.g. B,) that will be mapped to a percussion instru-
ment;

• [mapped note] is the Abc name of the mapped note (e.g. A). Any note equal to 〈note〉
will be typeset as [mapped note]. Use * to typeset 〈note〉 on its normal position;

• 〈percussion〉 is the MIDI code of a percussion instrument, or its standard name (please
see Section A.8.2, page 184). Spaces in the instrument name must be replaced by a hy-
phen - . Instrument names may be shortened; for example, you can write acou-ba-dr
instead of acoustic bass drum;

• [note shape] is a string that speci�es the shape of the note head: slash, triangle,
diamond, square, cross, x, circle-x, normal, cluster, inverted triangle, arrow
down, arrow up, slashed, back slashed, do, re, mi, fa, so, la, ti, and none.

Percussion maps can be turned o� specifying any clef di�erent than perc, or with the
new option map=off.

�e following example, kindly provided by Willem Vree, can be typeset and also played
correctly in MuseScore:

9.7. ABC2XML.PY EXTENSIONS 139

X: 1
L: 1/8
V: 1 clef=treble
V: 2 clef=perc
K: C
% abc2xml.py percussion maps
%%percmap C D 52 triangle
%%percmap A * 60 x
%%percmap c * 47 diamond
%
V:1 % treble clef
cA[CA]A AA[CA]A | cA[CA]A AA[CA]A |
V:2 % percussion
%%MIDI channel 10
cA[CA]A AA[CA]A | cA[CA]A AA[CA]A |

44
44

Let’s now examine a more complete example that implements all percussion instruments
described in the “Percussion notation” Wikipedia page. To play the �le correctly with abc-

2midi, we also specify the MIDI channel 10 (percussion instruments):

%%percmap D pedal-hi-hat x
%%percmap E bass-drum-1
%%percmap F acou-ba-dr % acoustic bass drum (abbreviation)
%%percmap G low-floor-tom
%%percmap A high-floor-tom
%%percmap B low-tom
%%percmap ^B tambourine triangle
%%percmap c acou-snare % acoustic snare
%%percmap _c elec-snare % electric snare
%%percmap ^c low-wo-blo triangle % low wood block
%%percmap =c side-stick
%%percmap d low-mi-tom % low-mid tom
%%percmap ^d hi-wo-blo triangle % high wood block
%%percmap e hi-mi-tom % high-mid tom
%%percmap ^e cowbell triangle
%%percmap f high-tom
%%percmap ^f ride-cymbal-1 x
%%percmap g closed-hi-hat x
%%percmap ^g open-hi-hat diamond
%%percmap a crash-cym-1 x
%%percmap ^a open-tri triangle

X: 1
M: none
T: Sibelius Drum Legend

140 CHAPTER 9. ABC AND MUSICXML

T: https://en.wikipedia.org/wiki/Percussion_notation
L: 1/4
V: 1 clef=perc
K: C
%
[V:1 clef=perc]
%%MIDI channel 10 % activate abc2midi map
%

D E F G A |
w: pedal bass acoustic lowfloor highfloor
w: hihat drum~1 bass~drum tomtom tomtom
%

B ^B c _c ^c |
w: low tambourine acoustic electric low
w: tomtom * snare snare wood~block
%

=c d ^d e ^e |
w: side lowmid high highmid cowbell
w: stick tomtom wood~block tomtom *
%

f ^f g ^g a ^a |
w: high ride closed open crash open
w: tomtom cymbal~1 hihat hihat cymbal~1 triangle

3

Sibelius	Drum	Legend
https://en.wikipedia.org/wiki/Percussion_notation

hi-hat
pedal

side

bass	drum
acoustic

drum	1
bass

highlow-mid

tom-tom
low-floor

high-mid

tom-tom
high-floor

cowbell
stick wood	blocktom-tom tom-tom

tambourine
tom-tom

low

ridehigh

snare
acoustic

openclosed

wood	block
low

snare
electric

opencrash
cymbal	1tom-tom hi-hathi-hat trianglecymbal	1

�e above examples can only be typeset by MuseScore. Fortunately, we learnt in Sec-
tion 8.3 (page 125) how to implement percussion notes for abcm2ps and abc2svg using note
mapping. Let’s take our �rst example and add note mapping, to make it compatible with all
programs:

%%beginsvg
<defs>
% x-shaped head
<path id="x_head"
d="m -3 -3 l 6 6 m 0 -6 l -6 6"
class="stroke" style="stroke-width:1.2"/>

% triangle head
<path id="triangle"

9.7. ABC2XML.PY EXTENSIONS 141

d="m -3.5 3.5 l 3.5 -7 l 3.5 7 l -7 0"
class="fill" />

% diamond head
<path id="diamond"
d="m 0 -3.5 l -3.5 3.5 l 3.5 3.5 l 3.5 -3.5 l -3.5 -3.5"
class="fill" />

</defs>
%%endsvg

X: 1
L: 1/8
V: 1 clef=treble
V: 2 clef=perc
K: C
% abc2xml.py percussion maps
I:percmap C D 52 triangle
I:percmap A * 60 x
I:percmap c * 47 diamond
%
% abcm2ps / abc2svg percussion maps
%
%%map drummap C print=D heads=triangle
%%map drummap A heads=x_head
%%map drummap c heads=diamond
%
V:1 % treble clef
cA[CA]A AA[CA]A | cA[CA]A AA[CA]A |
%
V:2 % perc clef
%%MIDI channel 10 % percussion map for abcMIDI
I:voicemap drummap % percussion map for abcm2ps/abc2svg
cA[CA]A AA[CA]A | cA[CA]A AA[CA]A |

9.7.3 Tablatures, Revisited

We learnt in Section 5.1 (page 91) how to de�ne tablatures with %%strtab. Since abc2xml.py
does not support this directive, tablatures that use the %%strtab syntax cannot be exported
to MusicXML.

Fortunately, abc2xml.py supports its own extensions to the K: or V: �elds to implement
tablatures that can be exported. �ese extensions can be used alongside %%strtab, making
the tablatures compatible with abc2svg too.

�e syntax is:
K: or V: 〈clef=tab〉 [strings=]〈tuning〉 [capo=〈n〉] [nostems]

Parameters are:

• [strings=]〈tuning〉 speci�es an alternate strings tuning. 〈tuning〉 is a text string that
defaults to E2,A2,D3,G3,B3,E4, i.e. the default guitar tuning. �ese are notes in In-
ternational Pitch Notation, not Abc notes. Spaces between the notes are not allowed.

• [capo=]〈n〉 indicates a capo on fret 〈n〉; tuning is changed accordingly.

142 CHAPTER 9. ABC AND MUSICXML

• [nostems] typesets tab notes with no stems.

If we want to make the tablature compatible with abc2svg, we just insert a %%strtab

line with no parameters. �is directive tells abc2svg to use the abc2xml.py syntax.
As a �rst example, we rewrite the simple tablature we already used. abc2xml.py does

not support multiple voice de�nitions in V:, so we will write the same voice twice:

%%strtab % for abc2svg

X: 1
M: 3/4
L: 1/4
%%score 1 T
V: T clef=tab octave=-1 % use standard guitar tuning
K: C
%
V: 1
C D E | F G A | B A B | c2 z ||
V: T
C D E | F G A | B A B | c2 z ||

1
2

0
2

0

3
0

2
3

0

Typese�ing the source with abc2svg we obtain similar output:

T
A
B

Alternate tunings are notated specifying the right notes in the strings= option. Guitar
DADGAD tuning, for example, is de�ned as D2,A2,D3,G3,A3,D4; standard Irish bouzouki
as G2,D2,A3,D3; bass guitar as E1,A1,D2,G2.

Guitar music is normally notated using the clef=treble-8 clef speci�er. To obtain sen-
sible �nger positions, octave=-1 must also be speci�ed in tablature voice de�nitions.

Optimal string and �nger positions are calculated by the scorewriter, but strings can be
forced using decorations !0! . . . !6!; �nger positions on the speci�ed strings will be cal-
culated accordingly. In the following example, we typeset a tablature for the C chord using
default strings in the �rst measure, then specifying alternate string positions:

9.7. ABC2XML.PY EXTENSIONS 143

X: 1
L: 1/4
M: 2/4
K: C
%
V:1 clef=tab octave=-1
% standard positions
[CEG] [CEG] [CEG]2 |
% alternate fingering
[CEG] [!6!C!5!E!4!G] [CE!4!G]2 |

�
✁
✂

�
✁
✂

�
✁
✂

�
✁
✂

✄
☎
✆

✄
☎
✆

Note that adding !4! to G in the second measure su�ces to alter the other strings; there
is no other way to get a C chord.

�e following example is taken from MuseScore’s documentation, with minor modi�ca-
tions suggested by Willem Vree. We want to typeset two voices in sta� notation and as a
tablature; we then write two almost identical pairs of voices. We add clef=treble-8 to the
K: �eld, and add tablature options to the V: de�nition of voices 3 and 4:

%%strtab % for abc2svg

X: 1
M: 4/4
L: 1/4
%%score (1 2) (3 4)
K: C clef=treble-8
% standard notation
V:1
g E/G/ G,/e/-e | d E/G/ G,/c/-c | B2 g f- | f D/G/ G,/B/- B |
V:2
C E G, E | C E G, E | G, D G, D | G, D G, D |
% tablature voices
V:3 clef=tab nostems octave=-1
g E/G/ G,/e/-e | d E/G/ G,/c/-c | B2 g f- | f D/G/ G,/B/- B |
V:4 clef=tab nostems octave=-1
C x x E | C x x E | G, D G, D | G, x x D |

�

✁

✂

✂
✁

✂
�

✂
✁ ✁

✄✄

�
�

�
�

✂

✂ ✂

✄� ✄

✂
✂

✂

✂✂

� � � �

As you can see, a few notes were replaced by invisible rests in voice 4 to avoid a minor

144 CHAPTER 9. ABC AND MUSICXML

issue with MuseScore’s handling of unisons in tablatures. In fact, when MuseScore �nds a
unison like E/ and E in voices 1 and 2, it puts the notes on two di�erent strings: this may lead
to unplayable positions. Other programs handle unisons correctly.

�e last example, kindly provided by Willem Vree, shows how to implement a tablature
for banjo. We specify 5 notes in strings= and add %%scale, needed by Musescore to make
the tablature �t in one line.

%%linebreak <none>

%%scale 0.65 % for Musescore
%%strtab % for abc2svg

X:1
T:Blue Moon Of Kentucky (banjo)
C:http://moinejf.free.fr/abcm2ps-doc/banjo.xhtml
M:4/4
L:1/4
V:1 treble-8
V:2 tab strings=G4,D3,G3,B3,D4 octave=-1
K:C
%
[V:1] z[Bg] [cg] [^cg] |: ^c/[dd]/ g/d/ d/g/ d/d/ | \
[V:2] z[B!5!g][c!5!g][^c!5!g] |: ^c/[dd]/ !5!g/!2!d/ d/!5!g/ !2!d/d/ | \
%
[V:1] B/d/ B/d/ A/d/ G/d/ | E/c/ G/d/ g/G/ d/g/ | \
[V:2] B/d/ B/d/ A/d/ G/d/ | E/c/ G/d/ !5!g/G/ d/!5!g/ | \
%
[V:1] G/e/ g/G/ e/G/ E/e/ | D/d/ g/G/ d/g/ B/d/ ||
[V:2] G/e/ !5!g/G/ e/G/ E/e/ | D/d/ !5!g/G/ d/!5!g/ B/d/ ||

http://moinejf.free.fr/abcm2ps-doc/banjo.xhtml

Blue	Moon	Of	Kentucky	(banjo)

0
0

0

0

0

0
2

2

0

0

0

0

2

0

0

0

2

0

0

0

0

00

2

10
0

2

0

0

0
0
0

3
0

0

32
0
3

0

0

0

1

0

2

0

9.8 Abc/MusicXML Conversion: Limitations

Converting simple tunes to MusicXML is usually pointless: abcm2ps, abc2svg, and abcMIDI

are excellent programs, and can easily manage the music in nearly all cases. Besides, Abc can
manage tune collections, while MusicXML cannot. Conversion can be useful in the case of
complex scores, such as choral or piano music; or when you want to use tablatures.

In general, conversion of melody and harmony will work, but several elements will be
ignored and/or skipped. Among these: nested tuplets; format �les; many forma�ing param-

9.8. ABC/MUSICXML CONVERSION: LIMITATIONS 145

eters; several �elds; a few note decorations; backslash sequences (use UTF-8 characters in-
stead); PostScript and SVG customisations and extensions; and maybe more.

In spite of these limitations, most Abc �les can be turned to MusicXML and imported in
MuseScore or LilyPond with very li�le or no manual customisation.

� � � � �

146 CHAPTER 9. ABC AND MUSICXML

Chapter 10

Advanced Usage

This chapter is wri�en for expert users who can work comfortably with the Bash shell;
many useful programs and scripts only work in this environment.

�e following information only applies to GNU/Linux and possibly to macOS (not tested).
Regre�ably, many commands and scripts that work in Unix-like systems don’t work in Win-
dows, even in POSIX-like environments like MSYS2. �erefore, Windows power users will
have to install Windows Subsystem for Linux, or a virtual machine running GNU/Linux.

10.1 Cropping PDF Files

By default, abcm2ps makes PostScript �les that consist of whole pages, even when the music
only spans one or a few lines. �e same holds for MuseScore, which creates whole-page PDF
�les. If you want to include the music in a document, whole pages are de�nitely bad.

To crop a PostScript or PDF �le to its actual contents, we can use the following Bash script,
pdfcrop.sh, which crops single-page PDF �les using low-level Ghostscript commands:

#!/bin/sh

pdfcrop.sh
Guido Gonzato, PhD. GPL 2 or later.

MYSELF=$(basename $0)

if [$# -eq 0] ; then
printf "Usage: ${MYSELF} <file.pdf>\n"
printf "This script uses ghostscript to crop a one-page pdf file.\n"
exit 1

fi

GS=gs
INPUT=$1
PDF=$(basename $1 .pdf)
OUTPUT=$PDF-cropped.pdf
GSOPTS="-q -sDEVICE=bbox -dBATCH -dNOPAUSE"

find the bounding box
$GS $GSOPTS $INPUT 2>&1 | grep "%%B" > $PDF.bbox

read bbox coordinates in variables

147

148 CHAPTER 10. ADVANCED USAGE

read tmp X1 Y1 X2 Y2 < $PDF.bbox

write the output, cropped to bbox
$GS -q -o $OUTPUT \

-sDEVICE=pdfwrite \
-c "[/CropBox [$X1 $Y1 $X2 $Y2] /PAGES pdfmark" \
-f $INPUT

/bin/rm -f $PDF.bbox
/bin/mv -f $OUTPUT $INPUT

echo "$INPUT cropped."

To crop a PostScript �le, we will simply do:

$ ps2pdf scale1.ps # scale1.pdf is created...

$ pdfcrop.sh scale1.pdf # ... then cropped.

scale1.pdf cropped.

$ _

�is is the procedure that I used in this manual to include the music examples.
To crop a multi-page PDF �le, the recommended program is PDFCrop, h�p://pdfcrop.

sourceforge.net:

$ pdfcrop tunes.pdf
PDFCROP 1.38, 2012/11/02 - Copyright (c) 2002-2012 by Heiko Oberdiek.

==> 49 pages written on `tunes-crop.pdf'.
$ _

Each page in the PDF �le will be cropped to its contents.

10.2 Using abc2svg in the Command Line

We normally use abc2svg in its browser-based editor, but in this environment abc2svg can-
not manage large Abc �les; say, tune collections with more than 300 tunes. It may become
too slow or even crash.

Luckily, abc2svg can also be used directly in the command line; in this case, it can manage
much larger Abc �les. abc2svg is actually a set of Javascript programs, so we will need a
runtime such as Node.js®, which is freely available (o�en as a native package) for GNU/Linux,
macOS, and Windows. Another Javascript runtime is �ickJS; it’s very fast, and is probably
the best choice for abc2svg in the command line.

10.2.1 Running abc2svg Scripts

�e Abc 2 page provides packages for both �ickJS and abc2svg, which includes the abcqjs
and abctopdf scripts. Alternatively, abc2svg can be installed using the Node.js®package
manager npm:

npm -g install abc2svg

_

http://pdfcrop.sourceforge.net
http://pdfcrop.sourceforge.net

10.2. USING ABC2SVG IN THE COMMAND LINE 149

which installs the abc2svg, abc2odt, and abctopdf scripts. abcqjs is equivalent to abc2svg,
but it’s much faster.

abcqjs translates an Abc source to an html �le:

$ abcqjs file.abc > file.html
$ _

file.html can then be loaded into any web browser; we can just display it or print it to
PDF. As stated earlier, Chromium is the recommended browser.

Other actions are possible. abcqjs can load other scripts that convert the Abc sources in
several ways:

• toabc.js performs tune selection and transposition, as explained in Section 6.5;

• toabw.js converts the input to Abiword ABW format;

• tomei.js converts the input (single tune only) to the MEI music notation format (h�ps:
//music-encoding.org/about);

• toodt.js converts the input to OpenDocument ODT format.

For example, this is how to use abcqjs to select Abc �les by K: �eld:

$ abcqjs toabc.js tunes.abc --select "K:D" > tunes_in_D.abc
$ _

10.2.2 Converting html to PDF

Output produced by abc2svg in html format is meant to be displayed in computer screens
or tablets. However, html can also be converted to PDF: in other words, abc2svg can replace
abcm2ps, in nearly all cases. �e author of both programs recommends that users switch to
abc2svg, since development of abcm2ps has stopped.

�e abc2svg package provides a script, abctopdf, which converts an Abc source �le to
PDF. It uses the fastest Javascript engine it �nds to convert Abc to html, then it looks for
an html to PDF converter: a Chromium-based browser, or weasyprint, or wkhtmltopdf, or
rsvg-convert. I have run many experiments using all available converters; in my tests, the
most reliable converter is Chromium.

�e command is:

$ abctopdf file.abc -o file.pdf
Using abcqjs

and chromium-browser

Using PPAPI flash.

... Written to file file.pdf.

If we omit the -o file.pdf option, the output �le will be named abc.pdf.
�e following script (abc2pdf.sh) is a simpli�ed version of abctopdf that turns an Abc

�le to a single-page, cropped PDF �le:

https://music-encoding.org/about
https://music-encoding.org/about

150 CHAPTER 10. ADVANCED USAGE

#!/bin/bash

abc2pdf.sh
Guido Gonzato, PhD. GPL 2 or later.

MYSELF=$(basename $0)

if [$# -eq 0] ; then
printf "Usage: ${MYSELF} <file.abc>\n"
printf "abc -> cropped pdf conversion.\n"
exit 1

fi

the ABC file must be the last argument
FILE=$(basename "${BASH_ARGV}" .abc)
ABC2SVG=abcqjs
CHROME=chromium-browser

echo "Converting to $FILE.html..."
$ABC2SVG $@ > $FILE.html
echo "Converting to $FILE.pdf..."
$CHROME -headless --print-to-pdf=$FILE.pdf \

--print-to-pdf-no-header $FILE.html
echo "Cropping $FILE.pdf..."
pdfcrop.sh $FILE.pdf

10.2.3 Inserting Music in Word Processors

To include music snippets in word processors like LibreO�ce Writer, the simplest solution
employs the toabw.js script:

$ abcqjs toabw.js music.abc > music.abw
$ _

music.abw can then be opened with LibreO�ce and converted to other formats, if needed.
�e toodt.js script could also be used, but it needs the jszip package.

10.2.4 Inserting Music in LATEX

�is guide is wri�en in LATEX, which tech people typically use instead of a word processor.
Inserting Abc music in LATEX documents is very simple; I assume you will turn your LATEX
sources to PDF using pdflatex.

Turn your music excerpts to PDF and, if needed, crop them as described above. When you
are done, you will include the graphicx package in your document and include the music as
in this example:

\documentclass[a4paper,12pt]{article}
\usepackage{graphicx}

\begin{document}
This is some ABC music:

\medskip

10.3. USING ABC.STY 151

\includegraphics[width=\linewidth]{music.pdf}
\end{document}

You can also insert whole pages of music using the pdfpages package. �e simplest way
is this LATEX source:

\documentclass[oneside]{article}
\usepackage{pdfpages}
\usepackage[a4paper,margin=1.5cm]{geometry}

\begin{document}

% pages=- means "all pages"
\includepdf[pages=-,pagecommand={},width=\textwidth]{music.pdf}

\end{document}

10.3 Using abc.sty

Prof. Enrico Gregorio of University of Verona (Italy) has wri�en the abc.sty package that
enables the inclusion of Abc code in LATEX documents. �e relevant archive can be freely
obtained from h�ps://www.ctan.org/pkg/abc. abc.sty is also included in texlive-music,
provided by several GNU/Linux distributions.

abc.sty provides the following facilities:

• the abc environment

• the \abcinput command

• the \abcwidth parameter.

More explanations are included in the package documentation. �is is a sample LATEX
document that employs abc.sty:

\documentclass[a4paper,12pt]{article}
\usepackage[generate,ps2eps]{abc}
\usepackage{mathptmx}

\begin{document}

\title{Example of ABC in \LaTeX{}}
\author{Guido Gonzato}
\date{}
\maketitle

This is a short piece.

\medskip

\begin{abc}
X:4

https://www.ctan.org/pkg/abc

152 CHAPTER 10. ADVANCED USAGE

T:Cronin's Hornpipe
R:hornpipe
S:Keenan and Glackin
E:7
M:C|
L:1/8
K:G
BA|GABc dBde|gage dega|bage dBGB|cABG A2BA|
GABc dBde|gage dega|bage dBAB|G2G2 G2:|
fg|afd^c d2ga|bged e2ga|(3bag (3agf gedB|(3cBA AG AcBA|
GABc dBde|~g3e dega|bage dBAB|G2G2 G2:|
\end{abc}

\medskip

Let's now include a tune we have in the current directory as
\texttt{tune.abc}:

\medskip

\abcinput{tune}

\end{document}

Save it as abc.tex and compile it with this command:

$ pdflatex -shell-escape abc.tex
...lots of messages...

abc.pdf (1 page, 39540 bytes).

Transcript written on abc.log.

10.4 Converting MIDI to Abc

Another way of ge�ing music in Abc format is the conversion from MIDI �les, which can be
accomplished using two programs.

midi2abc, part of abcMIDI, is a command line program that converts a MIDI �le to the
corresponding Abc source:

$ midi2abc file.mid -o file.abc
$ _

By default, the resulting Abc �le will contain only one measure per line.
Much be�er MIDI conversion can o�en be obtained using MuseScore, which can open

MIDI �les and export them in MusicXML format. We then use xml2abc.py to convert the
MusicXML �les to Abc.

b Note

�e quality of input MIDI �les heavily a�ects the quality of the converted Abc �les.
Results may vary from near perfection to unreadable junk.

10.5. THE ABCPP PREPROCESSOR 153

10.5 �e abcpp Preprocessor

A preprocessor is a program that modi�es a text �le, in accordance with the directives con-
tained in the �le. abcpp is a preprocessor expressly designed for Abc �les. It allows to

• exclude or include parts of a piece following speci�ed conditions;

• de�ne macros, i.e. symbols and sequences of customised directives;

• rename directives, symbols, and notes;

• include parts of other �les.

Needless to say, abcpp is a command-line program. We run it specifying the names of
input and output �les, and possibly de�ning symbols.

10.5.1 Basic Usage

Let’s look at an example. We will write a portable Abc �le, which can be read correctly by
abcm2ps and abc2midi. Save this source as test.abp:

X: 1
T: Test with abcpp
#ifdef ABCMIDI
T: (version for abc2midi)
Q: 1/4 = 120
#else
T: (version for abcm2ps)
Q: "Allegro" 1/4 = 120
#endif
K: C
#ifndef ABCMIDI
|::cdef gabc'::|
#else
|:|1-3 cdef gabc':|
#endif
c'bag fedc|

Note the lines that start in # : these are directives (commands) to the preprocessor.
�e �rst directive means: “if the symbol ABCMIDI is de�ned, then. . . ” If the condition is

true, the source continues with the next two lines; otherwise, with the lines that follow the
#else directive. �e #endif directive terminates the condition. Similarly, the fourth directive
means: “if the symbol ABCMIDI is not de�ned, then. . . ”. �e following two measures are
wri�en for abcm2ps; a�er the #else directive, two measures are wri�en in an abc2midi-
compatible way.

To convert the source to make it acceptable to abc2midi, we’ll run abcpp with this com-
mand line:

$ abcpp -ABCMIDI test.abp test-midi.abc
$ _

�is way we de�ne the ABCMIDI symbol, and a new Abc �le will be created:

154 CHAPTER 10. ADVANCED USAGE

X: 1
T: Test with abcpp
T: (version for abc2midi)
Q: 1/4 = 120
K: C
|:|1-3 cdef gabc':|
c'bag fedc|

If we run abcpp without de�ning any symbols, we’ll get the right source for abcm2ps:

$ abcpp test.abp test-ps.abc
$ _

X: 1
T: Test with abcpp
T: (version for abcm2ps)
Q: "Allegro" 1/4 = 120
K: C
|::cdef gabc'::|
c'bag fedc|

Let’s consider another example. Some Abc applications don’t support invisible rests. To
make it possible to use them portably, we have to insert these lines in the source:

#ifdef OLD

#define !x! z

#else

#define !x! x

#endif

In plain English: “if the OLD symbol is de�ned, then turn the !x! decoration into z ;
otherwise, !x! will become x ”. As we write the tune, we will use !x! to denote invisible
rests. When we convert the source for abcm2ps or other programs, the !x! symbol will be
turned into x or z in accordance with the presence of the symbol OLD.

10.5.2 Rede�ning Symbols

In Section 8.4 (page 126), we renamed some symbols in a way that makes them unrecognisable
to abc2midi. A be�er approach is using abcpp to de�ne shorter versions of long symbols.
We include these lines at the top of our source:

#define !fmt! !fermata!
#define !lmd! !lowermordent!
#define !umd! !uppermordent!
#define !ub! !upbow!
#define !db! !downbow!
#define !,! !breath!
#define !lphr! !longphrase!
#define !mphr! !mediumphrase!

10.6. CONVERSIONS: ABC2ABC 155

#define !sphr! !shortphrase!
#define !ifmt! !invertedfermata!
#define !trn! !invertedturn!
#define !itrn! !invertedturnx!
#define !mrd! !mordent!
#define !arp! !arpeggio!
#define !inv! !invisible!

then write the tune using the “new” symbols !fmt!, !lmd!, and so on. Before converting the
source, we preprocess it with the command:

$ abcpp mytune.abp mytune.abc
$ _

10.6 Conversions: abc2abc

It is part of the abcMIDI package. �is command-line program is used to modify the Abc
source in several ways. abc2abc is followed by the name of the �le to modify, and then by
one of these options:

-n 〈x〉 reformats the source with 〈x〉 measures per line.

-t 〈n〉 transposes the music by 〈n〉 semitones. 〈n〉 may be a negative number.

-d doubles the note lengths.

-v halves the note lengths.

-V 〈x〉 outputs only voice 〈x〉 of a polyphonic �le.

-X 〈n〉 for a �le with several pieces, renumbers the X: �eld starting with 〈n〉.

As usual, here is an example. Let’s modify this scale (�le cde.abc):

X: 1
L: 1/4
K: C
CDEF|GABc|cdef|gabc'|c'cCz|

running abc2abc with this command line:

$ abc2abc cde.abc -n 2 -t 2
$ _

�is command reformats the source to get two measures per line and transpose the music
up two half-tones. �is is what we obtain:

X:1
L:1/4
K:Eb

156 CHAPTER 10. ADVANCED USAGE

%
EFGA|Bcde|
efga|bc'd'e'|
e'eEz|

�e transposing feature will be extremely useful to players of clarinet and other trans-
posing instruments.

� � � � �

Chapter 11

�e End

11.1 What Now?

Congratulations: you have just begun to master Abc, which is a good thing for any musician.
You have learnt to use a cleverly designed music notation format that has been im-

plemented in several smart pieces of so�ware, wri�en by competent and passionate mu-
sicians/programmers. Now you can edit your own music, or use the vast amount of pieces in
Abc format that you can freely download. What about giving something back in exchange?

If you are a programmer, it would be great if you contributed to the development of
existing Abc so�ware. In particular, abcm2ps needs a new maintainer.

As a musician, please consider contributing your music to existing Abc collections; or
create your own, and make it public.

In any case: use Abc, spread the word, enjoy music!

11.2 Final Comments

I started with Abc several years ago, and it is always been my tool of choice whenever I
needed to make a score. �is manual started out as a list of notes I wrote for myself, and
it slowly grew to its present form. Since the Abc so�ware is free, I decided to release this
manual as free documentation.

A big “thank you!” to the author of abcm2ps and abc2svg, Jean-François Moine, for
writing these fantastic programs; to Michael Methfessel for writing the original abc2ps; to
James Allwright for writing the original abcMIDI, and to Seymour Schlien for maintaining
and improving it; to Willem Vree for the Abc/MusicXML translators; to Chris Walshaw for
creating Abc.

�e following people provided suggestions and code samples that helped me a lot: D.
Glenn Arthur, Gianni Cunich, Reinier Maliepaard, Sandro Pasquale�o, Norman Schmidt, and
many others at the Abc users mailing list.

Last but not least, thanks to all the people who contribute to Abc publishing tune collec-
tions on the web!

11.3 In LovingMemory ofAnnarosaDel Piero, 1930–2000

I had the privilege to be a friend of Annarosa’s, without whom I would be a di�erent person.

157

158 CHAPTER 11. THE END

No rhetoric, Annarosa was unique. She profoundly loved and enjoyed art and music. She
shared her love with me when I was just a kid, giving me records of opera arias as presents.
She took me by train to visit Venice for the �rst time in my life, and she introduced me to the
beauty of the mountains.

She confronted her fatal illness with courage and dignity. Till the end she listened to her
favourite music, till the end she gave me beautiful records of operas as present. �is guide is
dedicated to her memory: a tiny leaf born from the seed she threw when she had a six-year-
old kid listen to Rigole�o, so many years ago. Ciao, Annarosa.

� � � � �

Appendix A

Bits & Pieces

A.1 Web Links

• �e original Abc page:
h�p://abcnotation.com

• Abc 2 standard, version 2.1:
h�p://abcnotation.com/wiki/abc:standard:v2.1.

• �e Abc 2 home page:
h�p://abcplus.sourceforge.net

• �e abcm2ps and abc2svg home page and paramater list:
h�p://moinejf.free.fr
h�p://moinejf.free.fr/abcm2ps-doc/index.html

• �e abcMIDI home page and user guide:
h�p://ifdo.ca/∼seymour/runabc/top.html
h�ps://abcmidi.sourceforge.io/

• TradMusician home page:
h�p://nicolasjouve.fr/tradmusician/

• �e UTF-8/ISO-8859-1 converter:
h�ps://www.charset.org/utf8-to-latin-converter

• Hudson Lacerda’s Abc page, including advanced customisation and many new Post-
Script routines:
h�p://hudsonlacerda.webs.com/

• �e MusicXML home page:
h�p://www.musicxml.com

• A list of sites that host music in MusicXML:
h�p://www.musicxml.com/music-in-musicxml

• Willem Vree’s abc2xml.py and xml2abc.py:
h�ps://wim.vree.org/svgParse/abc2xml.html
h�ps://wim.vree.org/svgParse/xml2abc.html

159

http://abcnotation.com
http://abcnotation.com/wiki/abc:standard:v2.1
http://abcplus.sourceforge.net
http://moinejf.free.fr
http://moinejf.free.fr/abcm2ps-doc/index.html
http://ifdo.ca/~seymour/runabc/top.html
https://abcmidi.sourceforge.io/
http://nicolasjouve.fr/tradmusician/
https://www.charset.org/utf8-to-latin-converter
http://hudsonlacerda.webs.com/
http://www.musicxml.com
http://www.musicxml.com/music-in-musicxml
https://wim.vree.org/svgParse/abc2xml.html
https://wim.vree.org/svgParse/xml2abc.html

160 APPENDIX A. BITS & PIECES

• MuseScore is a multiplatform, free and open source scorewriter:
h�ps://musescore.org

• GNU LilyPond is a multiplatform, free and open source text-based scorewriter:
h�p://lilypond.org/web/

• �e abc package for LATEX:
h�p://www.ctan.org/tex-archive/macros/latex/contrib/abc/

• �e Abc Users mailing list:
h�ps://groups.io/g/abcusers

• Node.js®Javascript engine:
h�ps://nodejs.org

• �ickJS Javascript engine:
h�ps://bellard.org/quickjs/

A.2 Abc Fields

Field Where Notes and Example

A: header Area. A:Liverpool
B: header Book. B:Groovy Songs

C: header Composer. C:The Beatles

D: header Discography. D:The Beatles Complete Collection

F: header File name. F:http://www.beatles.org/help.abc
G: header Group. G:guitar
H: header History. H:This song was written...

I: header Information. I:lowered by a half-tone

I: body Meta-comment. I:MIDI program 2 32

K: last in header Key. K:C
L: header, body Note length. L:1/4
M: header, body Metre. M:3/4
N: header Notes. N:See also...

O: header Origin. O:English
P: header, body Part. P:Start
Q: header, body Tempo. Q:1/2=120
R: header Rhythm. R:Reel
S: header Source. S:Collected in Liverpool

s: body Decorations. s:!pp! * * !mf! * !ff!

T: second in header Title. T:Help!
U: header User de�ned. U:T=!trill!
V: header, body Voice. V:1
W: body Lyrics at end. W:Help! I need...

w: body inline lyrics. w:Help! I need...

X: start of header Index number. X:1
Z: header Transcription notes. Z:Transcribed by ear

A.3 ABC Summary

https://musescore.org
http://lilypond.org/web/
http://www.ctan.org/tex-archive/macros/latex/contrib/abc/
https://groups.io/g/abcusers
https://nodejs.org
https://bellard.org/quickjs/

Minimal example

X:1 % first header field, mandatory
K:C % last header field, mandatory
% defaults: free meter, note = 1/8,
% bars can be inserted anywhere
A A A A A A A A | A A | A A A A | A A

Pitch, absolute

X:1
K:C clef=treble
C, E, G, C E G c e g c' e' g'

Pitch, relative

X:1
K:C
[K:octave=-3] A [K:octave=-2] A \
[K:octave=-1] A [K:octave=0] A \
[K:octave=1] A [K:octave=2] A

Note duration, absolute

X:1
K:C
A8 A4 A2 A0 A A AA A/ A// A/// A////

Note duration, relative

X:1
L:1/4
K:C
A4 A2 A A/ [L:1/8] A4 A2 A A/ \
[L:1/16] A4 A2 A A/

Rests

X:1
K:C
z8 z4 z2 y20 z z/ z// z/// z//// | Z3 |

3

Beaming

X:1
K:C
A A AA A/A/ A/A/ A/A/A/A/ |

Measure bars

X:1
K:C
A2 | A2 || A2 [| A2 |] A2 .| A2 []
[|: A2 :|]|: A2 :|]: A2 :]|[: A2 \
|:: A2 ::|]

Accidentals

X: 1
K: C
^A2 ^^A2 _A2 __A2 =A2

Dotted notes

X:1
L:1/4
K:C
A3/2 A7/4 A15/8 | A>A A>>A A<<A A<A

Ties and slurs

X:1
K:C
C2-C2 (E2 G2) (c2 G2 E2) \
(,c2 G2 E2) .(c2 G2 C2)

Tuplets

A.3. ABC SUMMARY 161

X:1
K:C
(3CDE (5CDEFG (3:2:4G2A2Bc

3 5
3

Chords

X:1
K:C
[CEGc]2 [CEGc]4 [CEGc]>[CEGc] \
[CEGc]-[CEGc] ([CEGc][CEGc])

Grace notes

X:1
K:C
{B}A2 {B}A2 {/B}A2 {AB}A2 {/[Ace]}A2

Keys

X:1
K:C
[K:Gmaj] G2 [K:F#m] F2 \
[K:F] F2 [K:Gm] G2

Clefs

X: 1
K: C
[K:clef=none] A8 [K:clef=perc] A8 \
[K:clef=F] A,,8 [K:clef=C] A,8 \
[K:clef=G] A8

Time signatures

X:1
K:C
[M:C][Q: "Largo" 1/4=40] A8 [M:C|] A8 \
[M:4/4] A8 [M:7/8] A2 A2 AAA
[M:3/8+2/8+2/8] AAA AA AA

Largo = 40

4
4

8
7

8
3+8

2+8
2

Repeats and endings

X:1
K:C
|: C2D2E2F2 |1 G2E2G2z4 :|2 E2D2C2z2 :|

1 2

Accompaniment chords

X:1
K:C
"A"A2 "Am"A2 "A7"A2 "Amaj7"A2 "A+"A2

A Am A7 Amaj7 A+

Text annotations

X:1
K:C
"^up"A2 "_down"A2 "<left"a2 ">right"a2\
"<aro" ">und"A,2 "@-20,25@x,y"A2

up

down

left right

aro und

@x,y

Title and composer

X: 1
T: Title
T: Subtitle
C: Composer
K: C
C2 D2 E2 F2 | G2 A2 B2 c2 |

Title

Subtitle

Composer

Lyrics

X: 1
K: C
C2 D2 E2 F2 | G2 A2 B2 c2 |
w: Sing-ing, sing-ing,_ sing -ing!_

162 APPENDIX A. BITS & PIECES

Sing ing, sing ing, sing ing!

Lyrics at end

X: 1
K: C
C2 D2 E2 F2 | G2 A2 B2 c2 |
W: Singing, singing, singing!

Singing, singing, singing!

Dynamics

X:1
K:C
!pp!!<(!A2 B2 !<)!c2 !f!d2 | \
!ff!!>(!d2 c2 B2 !mf!!>)!A2 |

pp f ff mf

Articulations

X:1
K:C
.A2 !>!A2 !tenuto!A2 HA2 |

Position markings

X:1
K:C
[P:A] !segno!A2 !coda!A2 \
!D.C.!A2 !D.S.!A2 [P:B] !fine!A2 |

A B

D.C. D.S. FINE

Fingerings

X:1
K:C
!+!A2 !5!A2 !upbow!A2 !open!A2 |

5

Ornaments

X:1
K:C
!trill!A2 !roll!A2 !turn!A2 \
!turnx!A2 !arpeggio![Acea]2

tr

Other decorations

X:1
K:C
!//!A2 A2!trem2!A2 !8va(!A2 !ped!A2 \
!8va)!!ped-up!A//A//!beambr1!A//A//|

Ped

8va

*

Voices

X:1
%%score (1 2)
K:C
[V:1] c2 d2 e2 f2 |
[V:2] C2 G2 E2 G2 |

Staves

X:1
%%score [1 2]
V:1 name="Tenor"
V:2 name="Bass" octave=-1
K:C
[V:1] c2 d2 e2 f2 |
[V:2] C2 G2 E2 G2 |

Bass

Tenor

A.3. ABC SUMMARY 163

164 APPENDIX A. BITS & PIECES

A.4 Common Errors and Bad Practices

�is is a list of the most common errors that people make writing Abc �les. I selected these
errors from several tune collections available on the net.

A.4.1 Syntax Errors

�is is quite obvious: please make sure that you write Abc sources that can be read and/or
translated by so�ware! Always double check.

A.4.2 Character Encoding

Abc is simple text, but text encoding is not necessarily simple. Please make sure that your
source is either pure ASCII or UTF-8; other encodings will probably lead to wrong characters
in output.

�e file command on GNU/Linux and macOS is useful to check the encoding of Abc
�les:

$ file *abc

england.abc: ISO-8859 text, with CRLF line terminators

ireland.abc: data

klezmer.abc: Non-ISO extended-ASCII text, with very long lines

O_Neills_1001.abc: data

O_Neills_1850.abc: ASCII text

oneills.abc: ASCII text

scotland.abc: ASCII text

session.abc: UTF-8 Unicode text

tunes.abc: ASCII text

In the above list, the only correct �les are those described as “ASCII text” or “UTF-8 Uni-
code text”. To �x an ISO-8859 encoded �le, run this command:

$ iconv -f ISO-8859-15 -t UTF-8 < england.abc > england_utf8.txt

Files classi�ed as “data” need manual corrections.

A.4.3 Lines Too Long

As I stressed in Section 3.1.5 (page 56), one of the main advantages af the Abc notation is
readability. Please preserve it! Do do not write music lines that are longer than, say, 70 char-
acters. You’ll want your Abc source to �t the screen width on most devices; besides, long
lines are notoriously harder to read.

A.4.4 X: Number in Titles

�is is a very annoying bad practice. You get a tune collection, you want to select some tunes
to include them in your own tune collection, and you have to edit the titles to remove an
index number. . .

Please use %%writefields X, as explained in Section 4.1.21 (page 83)!

A.5. FORMATTING DIRECTIVES 165

A.4.5 Ties vs. Slurs

Although ties and slurs look the same in printed music, they have a completely di�erent
musical meaning. Regre�ably, some users abused the tie notation to connect notes of di�erent
pitch. �is is a non-fatal error, but all Abc so�ware will issue a warning.

Please use ties and slurs appropriately!

A.4.6 Outdated Syntax

�e current Abc standard de�nes a set of outdated elements that one should avoid. �e com-
plete list is available here: h�p://abcnotation.com/wiki/abc:standard:v2.1#outdated syntax

Q: Syntax

�e Q: �eld used to accept a simpli�ed syntax, like Q: 108. �is is deprecated; please specify
the tempo indicating the note length, like Q: 1/4=108.

! as End of Line

As we learnt in Section 4.1.6 (page 68), there are several ways to force line breaks. If your
sources use ! as an end of line marker, the easiest way to �x them is including the %%I:linebreak
! command.

+ for Decorations and Chords

In early version of Abc, decorations could be wri�en using + as delimiters instead of ! .
Similarly, chords could once be wri�en using + as delimiters instead of [and] . Please �x
your old sources!

\ in w: Lines

Using \ to split a w: line into two w: lines is now deprecated: please use + instead.

middle= Speci�er

�e K: or V: middle=〈note〉 speci�er was once used to specify the note that corresponds to
the third line in the score. �is syntax is now deprecated.

A.5 Formatting Directives

Directives supported by abc2svg and abcm2ps are listed and brie�y described at this page:
h�p://moinejf.free.fr/abcm2ps-doc/index.html

Directive parameters will be speci�ed as follows:

http://abcnotation.com/wiki/abc:standard:v2.1#outdated_syntax
http://moinejf.free.fr/abcm2ps-doc/index.html

166 APPENDIX A. BITS & PIECES

Parameter Type

length unit length indicated in cm, in or pt
text generic text
char character
logical logical value, true or false, yes or no, 1 or 0
int integer number
�oat number with decimals
str character string
char single character

�ese directives are also listed and explained at the abcm2ps parameters page.
Directives only available in abcm2ps:

%%abc2pscompat
%%alignbars
%%autoclef
%%botmargin
%%clip
%%dateformat
%%decoration
%%EPS
%%footerfont
%%footer
%%format
%%glyph
%%gutter
%%header
%%headerfont
%%landscape
%%leftmargin
%%micronewps
%%oneperpage
%%pageheight
%%pagewidth
%%pango
%%pdfmark
%%rightmargin
%%setdefl
%%splittune
%%staffwidth
%%tablature
%%topmargin

Directives only available in abc2svg:

%%beginml
%%chordnames
%%grid
%%grid2
%%ottava
%%fullsvg

A.5. FORMATTING DIRECTIVES 167

%%printmargin
%%singleline
%%sth

A.5.1 Page Format

�ese directives set the page geometry.

%%botmargin 〈length〉 sets the page bo�om margin to 〈length〉. Default: 1 cm; scope: page;
not available in abc2svg.

%%footer 〈text〉: sets the text to be typeset as footer on each page. Default: none; scope:
page; not available in abc2svg.

%%header 〈text〉: sets the text to be typeset as header on each page. Default: none; scope:
page; not available in abc2svg.

%%indent 〈length〉: sets the indentation for the �rst line or system to 〈length〉. Default: 0;
scope: tune.

%%landscape 〈logical〉: if 1, sets the page layout as landscape. Default: 0; scope: page; not
available in abc2svg.

%%leftmargin 〈length〉: sets the page le� margin to 〈length〉. Default: 1.8 cm; scope: page,
restart.

%%multicol 〈command〉: de�nes columns. 〈command〉 may be start, new, and end. De-
fault: none; scope: immediate, restart.

%%pageheight 〈length〉: sets the page height to 〈length〉. Default: 11 inches; scope: page;
not available in abc2svg. For European A4 paper, the right value is 29.7cm.

%%pagewidth 〈length〉: sets the page width to 〈length〉. Default: 8.5 inches; scope: page; not
available in abc2svg. For European A4 paper, the right value is 21cm.

%%rightmargin 〈length〉: sets the page right margin to 〈length〉. Default: 1.8 cm; scope:
page, restart.

%%staffwidth 〈length〉: used as an alternative to the %%pageheight and %%pagewidth di-
rectives. Default: none; scope: generation.

%%topmargin 〈length〉: sets the page top margin to 〈length〉. Default: 1 cm; scope: page; not
available in abc2svg.

A.5.2 Text

�ese directives are used to write text lines within a tune and between tunes. Fonts and
spacing are set with other directives that we will examine later on.

%%begintext...%%endtext : the pair %%begintext and %%endtext includes a group of
text lines that will be typeset.

168 APPENDIX A. BITS & PIECES

%%begintext

Spanish folk song, usually

accompanied by guitar and cymbals.

Nice tune indeed.

%%endtext

�e %%begintext directive can be given a parameter to change the text alignment:

%%begintext obeylines typesets text as is;
%%begintext fill (or ragged) formats the text to the page margins;
%%begintext justify (or align) as above, but aligns to the page right margin;
%%begintext skip ignores the following lines.

%%center 〈text〉: centers the following text.

%%text 〈text〉: writes the following text. For example:

%%text Spanish folk song

Scope: immediate, restart.

%%textoption 〈int〉: sets the default text option to be used between %%begintext and
%%endtext, or in %%EPS �les. �e parameter can be a digit or a corresponding string:
0 or obeylines), 1 (justify), 2 (fill), 3 (center), 4 (skip), 5 (right). If the option
is 4 (skip), no text or EPS is output. Default: 0; scope: generation.

A.5.3 Fonts

�ese directives specify the character fonts used in various parts of a score. Please note that
the common True Type fonts used by the operating system are not the same fonts used by
abcm2ps. In fact, abcm2ps uses the PostScript fonts, provided for and managed by Ghostscript.
Standard PostScript fonts are shown in Appendix A.6 (page 179). I remind you that indications
for adding new fonts are given in Section 8.6 (page 128).

%%annotationfont 〈string〉: font of annotations. Default: sans-serif 12; scope: immediate.

%%capofont 〈string〉: font of %%capo indications. Default: sans-serif 12; scope: immediate.

%%composerfont 〈string〉: font of C: �eld(s). Default: serifItalic 14; scope: tune.

%%footerfont 〈string〉: font of %%footer lines. Default: serif 16; scope: page.

%%font 〈string〉: declares a font for later usage. Scope: page.

%%gchordfont 〈string〉 [box]: accompaniment chords font. If the parameter box is present,
a box is drawn around the accompaniment chord. Default: sans-serif 12; scope: imme-
diate.

A.5. FORMATTING DIRECTIVES 169

%%gridfont 〈string〉: font of chord grids. lines. Default: serif 16; scope: tune.

%%headerfont 〈string〉: font of %%header lines. Default: serif 16; scope: page.

%%historyfont 〈string〉: font of H: �eld. Default: serif 16; scope: tune.

%%infofont 〈string〉: font of I: �eld. Default: serifItalic 14; scope: tune.

%%measurefont 〈string〉 [box]: text font of measure numbers. If the parameter box is pre-
sent, a box is drawn around the measure number. Default: serifItalic 10; scope: gener-
ation.

%%musicfont 〈string〉: de�nes a music font that replaces PostScript and/or SVG glyphs.

%%partsfont 〈string〉: font of P: �eld. Default: serif 15; scope: generation.

%%repeatfont 〈string〉: font of repeat numbers or text. Default: serif 13; scope: generation.

%%setfont-〈int〉 〈string〉 〈int〉: sets an alternate font for strings. In most strings, the cur-
rent font may be changed by $n (n = 1, 2, 3, 4). $0 resets the font to the default value.
Default size 12; scope: generation.

%%subtitlefont 〈string〉: font of the second T: �eld. Default: serif 16; scope: generation.

%%tempofont 〈string〉: font of Q: �eld. Default: serifBold 15; scope: tune.

%%textfont 〈string〉: font in %%text lines. serif 16; scope: generation.

%%titlecaps 〈logical〉: if 1, writes the title in capital le�ers. Default: 0; scope: tune.

%%titlefont 〈string〉: font of the �rst T: �eld. Default: serif 20; scope: tune.

%%titleformat 〈string〉: de�nes the format of the tune title. �is format overrides %%ti-
tleleft, %%infoline, and %%composerspace. Scope: tune.

%%titleleft 〈logical〉: if 1, writes the title le�-aligned instead of centered. Default: 0; scope:
tune.

%%tupletfont 〈string〉: font of tuplet indications. Default: serifItalic 12; scope: tune.

%%vocalfont 〈string〉: font of the text in w: lines. Default: serifBold 13; scope: generation.

%%voicefont 〈string〉: font of voice names. Default: serifBold 13; scope: tune.

%%wordsfont 〈string〉: font of the text in W: lines. Default: serif 16; scope: tune.

170 APPENDIX A. BITS & PIECES

A.5.4 Spacing

�ese directives specify spacing between score elements.

%%barsperstaff 〈int〉: a�empts to typeset the score with 〈int〉 bars on each line. Default:
0; scope: generation.

%%breaklimit 〈float〉: used together with %%maxshrink, it lets the user control where line
breaks may occur. �e parameter can range between 0.5 (line break occurs when the
line is 50% full) and 1.0. Default: 0.7; scope: generation.

%%break 〈int〉: inserts a break a�er 〈int - 1〉 symbols. Default: none; scope: generation.

%%breakoneoln 〈logical〉: if 1, treats an end of line as if it were a space (i.e. it breaks note
beams). Default: 1; scope: generation.

%%composerspace 〈length〉: sets the vertical space above the C: �eld to 〈length〉. Default:
0.2 cm; scope: tune.

%%gracespace 〈float〉 〈float〉 〈float〉: de�nes the space before, within and a�er grace no-
tes. Default: 6.5, 8.0, 12.0; scope: generation.

%%gutter 〈length〉: speci�es the amount of gu�er, i.e. the space between facing pages. De-
fault: 0; scope: page.

%%infospace 〈length〉: sets the vertical space above the I: �eld to 〈length〉. Default: 0;
scope: tune.

%%linebreak 〈string〉: de�nes or unde�nes the line break separators. �e string may be
empty or contain the values <EOL>, $, !, and <none>. Default: <EOL>; scope: imme-
diate.

%%lineskipfac 〈float〉: sets the factor for spacing between lines of text to 〈�oat〉. Default:
1.1; scope: generation.

%%maxshrink 〈float〉: sets how much to compress horizontally when sta� breaks are chosen
automatically. 〈�oat〉 must be between 0 (don’t shrink) and 1.0 (full shrink). Default:
0.65; scope: generation.

%%maxstaffsep 〈length〉: sets the maximum vertical space between systems. Default: 2000
pt; scope: generation.

%%maxsysstaffsep 〈length〉: sets the maximum vertical space between staves in a system.
Default: 2000 pt; scope: generation.

%%musicspace 〈length〉: sets the vertical space before the �rst sta� to 〈length〉. Default: 0.2
cm; scope: tune.

%%newpage: sets a page break. Scope: immediate, restart.

%%notespacingfactor 〈float〉: sets the proportional spacing of notes. 1 makes all notes
equally spaced. Default: 1.414 (

√
2); scope: generation.

A.5. FORMATTING DIRECTIVES 171

%%pagescale 〈float〉: sets the music scale factor to 〈�oat〉. Default: 1.0; scope: generation,
restart.

%%parskipfac 〈float〉: sets the factor for spacing between text paragraphs to 〈�oat〉. De-
fault: 0.4; scope: generation.

%%partsspace 〈length〉: sets the vertical space above the P: �eld in the header to 〈length〉.
Default: 0.3 cm; scope: generation.

%%scale 〈float〉: sets the music scale factor to 〈�oat〉, assuming a 72 PPI resolution; you
should use %%pagescale instead. Default: 0.75; scope: generation, restart.

%%sep 〈length1〉 〈length2〉 〈length3〉: typesets a centered line long 〈length3〉, with 〈len-
gth1〉 space above and 〈length2〉 space below. Default; none; scope: immediate, restart.

%%sep: typesets a centered separator. Default; none; scope: immediate, restart.

%%slurheight 〈float〉: sets the slur height factor; lesser than 1 �a�ens the slur, greater than
1 expands it. Default; 1.0; scope: generation.

%%staffbreak 〈length〉 [“f”]: sets a 〈length〉-long break (gap) in the current sta�. If the
le�er f is present, the sta� break is forced even if it occurs at the beginning or end of
a line. Default: none; scope: immediate, voice.

%%staffsep 〈length〉: sets the vertical space between di�erent systems to 〈length〉. Default:
46 pt; scope: generation.

%%stretchlast 〈float〉: stretches the last sta� of a tune when underfull by more than 〈�oat〉.
Default; 0.25; scope: generation.

%%stretchstaff 〈logical〉: if 1, stretches underfull staves across the page. Default: 1; scope:
generation.

%%subtitlespace 〈length〉: sets the vertical space above the second T: �eld to 〈length〉.
Default: 0.1 cm; scope: tune.

%%sysstaffsep 〈length〉: sets the vertical space between staves in the same system to 〈len-
gth〉. Default: 36 pt; scope: generation.

%%textspace 〈length〉: sets the vertical space above H: �elds at the end of a tune to 〈length〉.
Default: 0.5 cm; scope: generation.

%%tieheight 〈float〉: sets the tie height factor; lesser than 1 �a�ens the tie, greater than 1
expands it. Default; 1.0; scope: generation.

%%titlespace 〈length〉: sets the vertical space above the �rst T: �eld to 〈length〉. Default:
0.2 cm; scope: tune.

%%topspace 〈length〉: sets the vertical space above a tune to 〈length〉. Note that a tune may
begin with %%text directives before the title. Default: 0.8 cm; scope: tune.

%%vocalspace 〈length〉: sets the vertical space above w: lines to 〈length〉. Default: 23 pt;
scope: generation.

172 APPENDIX A. BITS & PIECES

%%voicescale 〈length〉: sets the scale of a voice, or of all voices if the comand is included
in the header. Default: 1 (0.5–1.5); scope: generation, voice.

%%vskip 〈h〉: adds 〈h〉 vertical space. 〈h〉 may be a negative value. Default: none; scope:
immediate, restart.

%%wordsspace 〈length〉: sets the vertical space above W: lines at end of the tune to 〈length〉.
Default: 0 pt, 5 pt; scope: tune.

A.5.5 Other Directives

Miscellaneous directives are grouped in this section.

%%abc 〈string〉: de�nes some Abc code. Along with %%abcm2ps, this directive is used for
conditional output generation. Default: none; scope: immediate.

%%abc2pscompat 〈logical〉 : if 1, reverts to the old metod of dealing with notes in bass and
other clefs. Default: 0; scope: generation.

%%abc-include 〈string〉: includes the Abc �le named 〈string〉. Default: none; scope: imme-
diate.

%%alignbars 〈int〉: aligns the bars of the next 〈int〉 lines of music. It only works on single-
voice tunes. Default: 0; scope: immediate, restart; not available in abc2svg.

%%aligncomposer 〈int〉: speci�es where to print the C: �eld. A negative value means “on
the le�”, 0 means “centre”, and a positive value means “on the right”. Default: 1; scope:
tune.

%%ambitus 〈1〉: typesets an ambitus before the clef. Scope: generation. Not available in abcm-

2ps.

%%autoclef 〈logical〉: if 1, the clef set by the K: is initialised to “auto”; if 0, the clef is set as
“treble”. Default: 1; scope: generation.

%%beginml–%%endml: starts/ends a sequence of markup language (XHTML) commands. Scope:
immediate. Not available in abcm2ps.

%%beginps–%%endps: starts/ends a sequence of PostScript commands; please see Section 8.2
(page 122). Default: none; scope: immediate.

%%beginsvg–%%endsvg: starts/ends a sequence of SVG commands. Default: none; scope:
immediate.

%%bgcolor 〈string〉: de�nes the background colour of HTML output. �e parameter can be
a colour name, like ‘green’, or an RGB colour value, like #00ff00. Default: none; scope:
page.

%%bstemdown 〈logical〉: if 1, the stem of the note on the third sta� line points downwards.
Otherwise, it points upwards or downwards in accordance with the previous note. De-
fault: 0; scope: immediate, voice.

A.5. FORMATTING DIRECTIVES 173

%%cancelkey 〈logical〉: if 1, accidentals are cancelled using natural signs when the key sig-
nature changes. Default: 1; scope: generation.

%%capo 〈int〉: for accompaniment chords, speci�es that a capo should be used on fret 〈n〉.
Scope: generation.

%%clef 〈clef〉 [line] [octave]: inserts a clef change, in a manner similar to K:. 〈clef〉 may
be treble (or G2), alto (C3), tenor (Cf), bass (F4), perc (P2), G, C, G, C, F, P, or none.
�e la�er typesets no clef on the sta�. �e name of a user-provided PostScript glyph
may also be used. [line] speci�es the sta� line on which the clef sits. [octave] can be +8
or -8, to print “8” above or below the clef; ^8 or 8, to print “8” above or below the clef
and perform octave transposition. Default: none; scope: immediate, voice.

%%clip 〈string〉: de�nes a subset of tune(s) to be printed. Default: none; scope: generation.

%%combinevoices 〈int〉: equivalent to %%voicecombine applied to all voices. Default: 0;
scope: immediate, voice.

%%contbarnb 〈logical〉: if 1, the bar number of the second repeat(s) is reset to the number
of the �rst repeat. If 0, bars are sequentially numbered. Default: 0; scope: generation.

%%custos 〈logical〉: if 1, a custos is added at the end of each music line. A custos is a symbol
that indicates the pitch for the �rst note of the next line. �is directive works with single
voice tunes only. Default: 0; scope: generation.

%%dateformat 〈string〉: de�nes the format of date and time. Default is %b %e, %Y %H:%M.
�e �elds specify, respectively: abbreviated month name (Jan–Dec), day of month (1–
31), year, hour (0–23), minute (0–59). Default: %b %e, %Y %H:%M; scope: page.

%%dblrepbar 〈string〉: de�nes how double repeat bars are drawn; e.g. :][: (default), or ::,
or :|:. Scope: generation.

%%deco 〈string1〉 〈int1〉 〈string2〉 〈int2〉 〈int3〉 〈int4〉 〈string3〉: adds a new decoration.
Default: none; scope: immediate.

%%decoerr 〈logical〉: if 1, an error message is issued when a decoration is unde�ned. De-
fault: 1; scope: immediate.

%%decoration 〈char〉: de�nes the decoration separator, which can be ! (default) or + .
Default: ! ; scope: immediate; not available in abc2svg.

%%diagram 〈int〉: if 1, typesets guitar chords diagram above the notes. Scope: generation.
Not available in abcm2ps.

%%dynalign 〈logical〉: if 1, horizontally aligns the dynamics marks. Default: 1; scope: gen-
eration.

%%EPS 〈string〉: includes an external EPS �le in the score. Default: none; scope: immediate,
restart; not available in abc2svg.

%%equalbars 〈bool〉: makes the width of measures proportional to their duration. Default:
none; scope: generation; not available in abcm2ps.

174 APPENDIX A. BITS & PIECES

%%fgcolor 〈string〉: de�nes the foreground colour of HTML output. �e parameter can be
a colour name, like ‘green’, or an RGB colour value, like #00ff00. Default: none; scope:
page.

%%flatbeams 〈logical〉: if 1, forces �at (horizontal) note beams. Default: 0; scope: genera-
tion.

%%format 〈string〉: reads the format �le speci�ed as parameter. Default: none; scope: im-
mediate.

%%gchordbox 〈logical〉: if 1, draws a box around accompaniment chords. Default: 0; scope:
generation.

%%glyph 〈string1〉 〈string1〉: sets the name of a Unicode glyph. �e �rst parameter is a
hexadecimal value, the second is the name of the associated glyph in the font �les.
Default: none; scope: generation.

%%graceslurs 〈logical〉: if 1, draws slurs on grace notes. Default: 1; scope: generation.

%%graceword 〈logical〉: if 1, aligns lyrics words under grace notes when they are present.
Default: 0; scope: generation.

%%grid 〈int〉: typesets a chord grid above (〈n〉 = 1) or below (〈n〉 = -1) the tune. Default: 0;
scope: generation; not available in abcm2ps.

%%grid2 [int]: replaces a voice with a chord grid. When [int] is missing, the grid is disabled.
Default: 0; scope: voice; not available in abcm2ps.

%%hyphencont 〈logical〉: if 1, and if lyrics under the sta� end with a hyphen, puts a hyphen
in the next line. Default: 1; scope: generation.

%%infoline 〈logical〉: if 1, displays R: and A: �elds on the same line above the �rst music
line. Default: 0; scope: tune.

%%infoname 〈string〉 〈string〉: de�nes the name of information �elds that are printed when
%%writefields is also set to 1. Defaults: �eldR:, ”Rhythm: ”; B:, ”Book: ”; S:, ”Source:
”; D:, ”Discography: ”; N:, ”Notes: ”; Z:, ”Transcription: ”; H:, ”History: ”; scope: tune.

%%keywarn 〈logical〉: if 1, a cautionary key signature is printed when a key signature change
occurs at the beginning of a music line. Default: 1; scope: generation.

%%linewarn 〈logical〉: if 1, outputs a warning message if there are too many or too few
elements in a music line. Default: 1; scope: generation.

%%map 〈string〉: de�nes note mapping. Default: none; scope: immediate.

%%measurenb 〈int〉: if 〈int〉 is greater than 0, typesets measure numbers every 〈int〉 bars; if
it is 0, typesets the measure number at the beginning of the sta�. Default: -1; scope:
generation.

%%measurebox 〈logical〉: if 1, draws a box around measure numbers. Default: 0; scope: gen-
eration.

A.5. FORMATTING DIRECTIVES 175

%%micronewps 〈logical〉: if 1 uses the new PostScript functions to draw microtonal acciden-
tals. Default: 0; scope: page; not available in abc2svg.

%%microscale 〈int〉: de�nes the denominator for microtone accidentals. Default: none; scope:
immediate, voice.

%%oneperpage 〈logical〉: if 1, outputs one tune per page. Default: 0; scope: page.

%%pango 〈logical〉: if abcm2ps was compiled with Pango support, this directive enables or
disables PostScript output with Pango. Default: 1; scope: generation.

%%partsbox 〈logical〉: if 1, draws a box around part names (P: �elds.) Default: 0; scope:
generation.

%%pdfmark 〈int〉: if the parameter is 1, inserts marks in the PostScript output for titles. Post-
Script to PDF translators can use the marks to create a PDF tune index. If the parameter
is greater than 1, marks are inserted for titles and subtitles. Default: 0; scope: page.

%%pos 〈type〉 〈position〉: de�nes the direction and/or the position of some music elements.
〈type〉 can be dynamic, gchord, gstem, ornament, stem, vocal, and volume. 〈position〉
can be auto, above or up, below or down, hidden, and opposite. Default: auto; scope:
immediate, voice.

%%postscript 〈string〉: lets the user add a new PostScript routine, or change an existing
one. Default: none; scope: immediate; not available in abc2svg.

%%ps 〈string〉: same as %%postscript.

%%rbdstop 〈logical〉: if 1, repeat brackets stop on a double bar. Default: 1; scope: generation.

%%rbmax 〈int〉: sets the maximum number of bars over which a repeat bracket is drawn.
Default: 4; scope: generation.

%%rbmin 〈int〉: sets the minimum number of bars over which a repeat bracket is drawn.
Default: 2; scope: generation.

%%repbra 〈logical〉: if 0, prevents displaying repeat brackets for the current voice. Default:
1; scope: generation, voice.

%%repeat 〈int1〉 〈int2〉: repeats a sequence of notes or bars. Default: none; scope: immedi-
ate.

%%score 〈string〉: de�nes how staves are to be printed in multivoice tunes. Default: none;
scope: immediate.

%%select 〈string〉: select a subset of tunes to be printed. Default: none; scope: generation.

%%setbarnb 〈int〉: sets the number of the next measure, excluding the �rst. To set the num-
ber of the �rst measure, the directive must be wri�en in the tune header. Default: none;
scope: immediate.

%%setdefl 〈logical〉: if 1, outputs some indications about the note/chord and/or decora-
tions for customization purposes. �ese indications are stored in the PostScript variable
defl. Default: 0; scope: generation; not available in abc2svg.

176 APPENDIX A. BITS & PIECES

%%shiftunison 〈logical〉: if 1, shi�s note heads that belong to di�erent voices that are in
unison. It applies to do�ed notes and notes that are shorter than a half note. Default:
0; scope: generation.

%%splittune 〈logical〉: if 1, splits tunes that do not �t in a single page. Default: 0; scope:
generation.

%%squarebreve 〈logical〉: if 1, displays “brevis” notes in square format. Ending brevis notes
are always squared. Default: 0; scope: generation.

%%ss-pref 〈string〉: changes the pseudo-comment pre�x(es). Default: %; scope: immediate.

%%straightflags 〈logical〉: if 1, typesets straight �ags on note stems in bagpipe tunes.
Default: 0; scope: generation.

%%staff 〈int〉: typesets the next symbols of the current voice on the 〈int〉-th sta�. Default:
none; scope: immediate, voice.

%%stafflines 〈int〉: sets the number of sta� lines of the current voice. Default: 5; scope:
generation, voice.

%%staffnonote 〈int〉: avoids printing a sta�, depending on the parameter. If it is 0, the sta�
is not printed if it contains only invisible rests and notes; if it is 1, the sta� is not printed
if it contains only rests and invisible notes; if it is 2, the sta� is printed. Default: 1; scope:
generation.

%%staffscale 〈float〉: sets the scale of the sta� of the current voice. �is directive corre-
sponds to the staffscale V: parameter. Default: 1; scope: generation, voice.

%%staves 〈string〉: de�nes how staves are to be printed. �is directive is deprecated; please
use %%score instead. Default: none; scope: immediate.

%%stemheight 〈float〉: sets the stem height to 〈�oat〉. Default: 20.0; scope: generation.

%%tablature: de�nes a tablature. Default: none; scope: generation.

%%timewarn 〈logical〉: if 1, if a time signature occurs at the beginning of a music line, a
cautionary time signature is added at the end of the previous line. Default: 0; scope:
generation.

%%titletrim 〈logical〉: if 1, move the last word of a title to the head if it starts with a capital
le�er and it is preceded by a space and a comma. Default: 1; scope: tune.

%%transpose 〈int〉 [char]: transposes the music by 〈int〉 semitones. �e optional param-
eter may be # or b , meaning that the new key signature will have sharps or �ats.
Default: 0; scope: immediate.

%%tune 〈string〉: select the tune(s) to which the following options will be applied. Default:
none; scope: generation.

%%tuplets 〈int1〉 〈int2〉 〈int3〉 〈int4〉: de�nes how tuplets are to be drawn. Default: 0, 0,
0, 0; scope: immediate.

A.5. FORMATTING DIRECTIVES 177

%%user 〈string〉: this directive is the equivalent of the U: �eld, and can be used to rede�ne
default decorations in format �les. Default: none; scope: generation.

%%voice 〈string〉: select the voice(s) to which the following options will be applied. Default:
none; scope: generation.

%%voicecolor 〈string〉: de�nes the colour of the symbols in the current voice. �e param-
eter is an RGB colour, like #aaff80. Default: none, #000000; scope: immediate, voice.

%%voicecombine 〈int〉: de�nes how to combine notes and rests of several voices on the
same sta�. Default: 0; scope: immediate, voice.

%%voicemap 〈string〉: de�nes the note mapping of a voice. Default: none; scope: immediate,
voice.

%%writefields 〈string〉 〈logical〉: if 1, displays the information �elds de�ned in 〈string〉.
Default: COPQTWw, 1; scope: generation.

A.5.6 Deprecated Directives

�e following directives were available in previous releases of abcm2ps and should be re-
placed with their newer counterparts.

%%abcm2ps: replaced by %%ss-pref.

%%barnumbers: replaced by %%measurenb.

%%comball: replaced by %%combinevoices 2.

%%continueall: replaced by %%linebreak none along with %%linewarn 0.

%%dynamic: replaced by %%pos dynamic.

%%exprabove: replaced by %%pos dynamic above or %%pos volume above.

%%exprbelow: replaced by %%pos dynamic below or %%pos volume below.

%%gchord: replaced by %%pos gchord.

%%gstemdir: replaced by %%pos gstem.

%%measurefirst: replaced by %%setbarnb.

%%musiconly: replaced by %%writefields w.

%%ornament: replaced by %%pos ornament.

%%printparts: replaced by %%writefields P.

%%printtempo: replaced by %%writefields Q.

%%stemdir: replaced by %%pos stem.

%%transpose: replaced by shift=.

178 APPENDIX A. BITS & PIECES

%%vocal: replaced by %%pos vocal.

%%vocalabove: replaced by %%pos vocal above.

%%volume: replaced by %%pos volume.

%%withxrefs: replaced by %%writefields X.

%%writehistory: replaced by %%writefields BDHNRSZ.

A.6. POSTSCRIPT FONTS 179

A.6 PostScript Fonts

�ese are the 35 standard PostScript fonts, supported by abcm2ps:

AvantGarde-Book

AvantGarde-BookOblique

AvantGarde-Demi

AvantGarde-DemiOblique

Bookman-Light

Bookman-LightItalic

Bookman-Demi

Bookman-DemiItalic

Courier

Courier-Bold

Courier-Oblique

Courier-BoldOblique

Helvetica

Helvetica-Bold

Helvetica-Oblique

Helvetica-BoldOblique

Helvetica-Narrow

Helvetica-Narrow-Bold

Helvetica-Narrow-Oblique

Helvetica-Narrow-BoldOblique

NewCenturySchlbk-Roman

NewCenturySchlbk-Bold

NewCenturySchlbk-Italic

NewCenturySchlbk-BoldItalic

Palatino-Roman

Palatino-Bold

Palatino-Italic

Palatino-BoldItalic

Times-Roman

Times-Bold

Times-Italic

Times-BoldItalic

Σψµβολ (Symbol)

ZapfChancery-MediumItalic

✺❁❐❆✤❉■❇❂❁▼▲ (ZapfDingbats)

A.7 abcMIDI Directives

Most of these directives are also listed and explained at the abcMIDI page, h�ps://abcmidi.
sourceforge.io/

%%MIDI barlines: turns o� %%nobarlines.

%%MIDI bassprog 〈int〉: sets the MIDI instrument for the bass notes in accompaniment
chords to 〈int〉 (0–127).

%%MIDI bassvol 〈int〉: sets the velocity (i.e., volume) of the bass notes in accompaniment
chords to 〈int〉 (0–127).

%%MIDI beat 〈int1〉 〈int2〉 〈int3〉 〈int4〉: controls the volumes of the notes in a measure.
�e �rst note in a bar has volume 〈int1〉; other “strong” notes have volume 〈int2〉 and
all the rest have volume 〈int3〉. �ese values must be in the range 0–127. �e parameter
〈int4〉 determines which notes are “strong”. If the time signature is x/y, then each note
is given a position number k = 0, 1, 2. . . x-1 within each bar. If k is a multiple of 〈int4〉,
then the note is “strong”.

%%MIDI beataccents: reverts to normally emphasised notes. See also %%MIDI nobeatac-

cents.

https://abcmidi.sourceforge.io/
https://abcmidi.sourceforge.io/

180 APPENDIX A. BITS & PIECES

%%MIDI beatmod 〈int〉: increments the velocities as de�ned by %%MIDI beat.

%%MIDI beatstring 〈string〉: similar to %%MIDI beat, but indicated with an fmp string.

%%MIDI bendstring 〈int〉 [int] . . . : speci�es pitch trajectory for bent notes.

%%MIDI bendvelocity 〈int1〉 〈int2〉: speci�es the change in pitch and rate of change of
bent notes.

%%MIDI c 〈int〉: speci�es the MIDI pitch which corresponds to C . �e default is 60. �is
number should normally be a multiple of 12.

%%MIDI channel 〈int〉: selects the melody channel 〈int〉 (1–16).

%%MIDI chordattack 〈int〉: delays the start of chord notes by 〈int〉MIDI units.

%%MIDI chordname 〈string int1 int2 int3 int4 int5 int6〉: de�nes new chords or rede�-
nes existing ones as was seen in Section 7.1.11 (page 113).

%%MIDI chordprog 〈int〉: sets the MIDI instrument for accompaniment chords to 〈int〉 (0–
127).

%%MIDI chordvol 〈int〉: sets the volume (velocity) of chord notes to 〈int〉 (0–127).

%%MIDI control 〈bass/chord〉 〈int1 int2〉: generates a MIDI control event. If %%control
is followed by 〈bass〉 or 〈chord〉, the event apply to the bass or chord channel, otherwise
it will be applied to the melody channel. 〈int1〉 is the MIDI control number (0–127) and
〈int2〉 the value (0–127).

%%MIDI controlcombo: indicates that the next %%MIDI controlcombo directive does not
replace previous ones.

%%MIDI controlstring 〈int1 int2 . . . 〉: used for note shaping; this directive is still in de-
velopment.

%%MIDI deltaloudness 〈int〉: by default, !crescendo! and !dimuendo! modify the beat
variables 〈vol1〉 〈vol2〉 〈vol3〉 15 volume units. �is directive allows the user to change
this default.

%%MIDI drone 〈int1 int2 int3 int4 int5〉: speci�es a two-note drone accompaniment. 〈int1〉
is the drone MIDI instrument, 〈int2〉 the MIDI pitch 1, 〈int3〉 the MIDI pitch 2, 〈int4〉
the MIDI volume 1, 〈int5〉 the MIDI volume 2. Default values are 70 45 33 80 80.

%%MIDI droneoff: turns the drone accompaniment o�.

%%MIDI droneon: turns the drone accompaniment on.

%%MIDI drumbars 〈int〉: speci�es the number of bars over which a drum pa�ern string is
spread. Default is 1.

%%MIDI drum 〈str〉 〈int1 int2 int3 int4 int5 int6 int7 int8〉: generates a drum accompa-
niment pa�ern, as described in Section 7.1.15 (page 116).

A.7. ABCMIDI DIRECTIVES 181

%%MIDI drummap 〈str〉 〈int〉: associates the note 〈str〉 (in Abc notation) to the a percussion
instrument, as listed in Section A.8.2 (page 184).

%%MIDI drumoff turns drum accompaniment o�.

%%MIDI drumon turns drum accompaniment on.

%%MIDI expand: expand notes to make them overlap the following notes.

%%MIDI fermatafixed: expands a !fermata! by one unit length; that is, HC3 becomes C4.

%%MIDI fermataproportional: doubles the length of a note preceded by !fermata!; that
is, HC3 becomes C6. abc2midi does this by default.

%%MIDI gchordbars 〈str〉: spreads the chord 〈str〉 over 〈n〉 consecutive bars of equal length.
�e length of 〈str〉 should be evenly divisible by 〈n〉, otherwise the chords will not play
properly.

%%MIDI gchord 〈str〉: sets up how accompaniment chords are generated; please see Sec-
tion 7.1.10 (page 111).

%%MIDI gchordoff: turns accompaniment chords o�.

%%MIDI gchordon: turns accompaniment chords on.

%%MIDI grace 〈float〉: sets the fraction of the next note that grace notes will take up. 〈�oat〉
must be a fraction such as 1/6.

%%MIDI gracedivider 〈int〉: sets the grace note length as 1/〈int〉th of the following note.

%%MIDI makechordchannels 〈int〉: this is a very complex directive used in chords contain-
ing microtones. Please consult the abcMIDI documentation.

%%MIDI nobarlines: normally, an accidental applied to a note also applies to other equal
notes until the next bar. By using this directive, the accidental will apply to the follow-
ing note only.

%%MIDI nobeataccents: forces the 〈int2〉 volume (see %%MIDI beat) for each note in a bar,
regardless of their position.

%%MIDI noportamento: turns o� the portamento controller on the current channel.

%%MIDI pitchbend 〈bass/chord〉 〈int1 int2〉: generates a pitchbend event on the current
channel, or on the bass or chord channel as speci�ed. �e value given by the following
two bytes indicates the pitch change.

%%MIDI portamento [bass] [chord] 〈int〉: turns on the portamento controller (glide ef-
fect) on the current channel (or to bass/chord channel) and set it to 〈int〉. 0 turns o�
the e�ect.

%%MIDI program [int1] 〈int2〉: selects the program (instrument) 〈int2〉 (0–127) for channel
〈int1〉. If this is not speci�ed, the instrument will apply to the current channel.

%%MIDI ptstress 〈string〉: uses the stress pa�ern in the �le name given as 〈string〉.

182 APPENDIX A. BITS & PIECES

%%MIDI randomchordattack: delays the start of chord notes by a random number of MIDI
units.

%%MIDI ratio 〈int1 int2〉: sets the ratio of note lengths in broken rhythm. Normally, c>c
will make the �rst note three times as long as the second; this ratio can be changed
with %%ratio 2 1.

%%MIDI rtranspose 〈int1〉: transposes relatively to a prior %%transpose directive by 〈int1〉
semitones; the total transposition will be 〈int1 + int2〉 semitones.

%%MIDI snt 〈int〉 〈float〉: alters the standard MIDI pitch of a note 〈0–127〉; e.g. %%MIDI snt

60 60.5 alters the pitch of C.

%%MIDI stressmodel 〈int〉: uses the stress model given as parameter.

%%MIDI temperamentequal 〈int1〉 [int2] [int3] [int4]: uses a tempered scale de�ned by
〈int1〉 equal divisions of [int2] cents (default: 1200). �e parameters [int3] and [int4]

give the size of the ��h interval and of accidentals.

%%MIDI temperamentlinear 〈float1 float2〉: changes the temperament of the scale. 〈�-
oat1〉 speci�es the size of an octave in cents of a semitone, or 1/1200 of an octave.
〈�oat2〉 speci�es in the size of a ��h (normally 700 cents).

%%MIDI temperamentnormal: restores normal temperament.

%%MIDI transpose 〈int〉: transposes the output by 〈int〉 semitones. 〈int〉 may be positive
or negative.

%%MIDI trim 〈int1〉 〈int2〉: controls the articulation of notes and chords by placing silent
gaps between the notes. �e length of these gaps is determined by 〈int1〉/〈int2〉 and the
unit length is speci�ed by the L: �eld. �ese gaps are produced by shortening the notes
by the same amount. If the note is already shorter than the speci�ed gap, then the gap
is set to half the length of the note. It is recommended that 〈int1〉/〈int2〉 be a fraction
close to zero. Trimming is disabled inside slurs as indicated by parentheses. Trimming
is disabled by se�ing 〈int1〉 to 0.

%%MIDI tuningsystem 〈string〉: when 〈string〉 is comma53, the Holdrian scale (53 micro-
tones) will be used instead of the standard 12-note tempered scale.

%%MIDI vol 〈int〉: increases the loudness of the next note by 〈int〉.

%%MIDI volinc: equivalent to %%MIDI vol.

A.8. MIDI INSTRUMENTS 183

A.8 MIDI Instruments

A.8.1 Standard instruments

�e following is a complete list of the General MIDI standard instruments, subdivided in
instrument families. Remember, when using abc2midi the instrument number must be de-
creased by 1.

Piano Chromatic Percussion Organ

1. Acoustic Grand 9. Celesta 17. Drawbar Organ
2. Bright Acoustic 10. Glockenspiel 18. Percussive Organ
3. Electric Grand 11. Music Box 19. Rock Organ
4. Honky-Tonk 12. Vibraphone 20. Church Organ
5. Electric Piano 1 13. Marimba 21. Reed Organ
6. Electric Piano 2 14. Xylophone 22. Accordion
7. Harpsichord 15. Tubular Bells 23. Harmonica
8. Clavinet 16. Dulcimer 24. Tango Accordion
Guitar Bass Solo Strings

25. Nylon String Guitar 33. Acoustic Bass 41. Violin
26. Steel String Guitar 34. Electric Bass(�nger) 42. Viola
27. Electric Jazz Guitar 35. Electric Bass(pick) 43. Cello
28. Electric Clean Guitar 36. Fretless Bass 44. Contrabass
29. Electric Muted Guitar 37. Slap Bass 1 45. Tremolo Strings
30. Overdriven Guitar 38. Slap Bass 2 46. Pizzicato Strings
31. Distortion Guitar 39. Synth Bass 1 47. Orchestral Strings
32. Guitar Harmonics 40. Synth Bass 2 48. Timpani
Ensemble Brass Reed

49. String Ensemble 1 57. Trumpet 65. Soprano Sax
50. String Ensemble 2 58. Trombone 66. Alto Sax
51. SynthStrings 1 59. Tuba 67. Tenor Sax
52. SynthStrings 2 60. Muted Trumpet 68. Baritone Sax
53. Choir Aahs 61. French Horn 69. Oboe
54. Voice Oohs 62. Brass Section 70. English Horn
55. Synth Voice 63. SynthBrass 1 71. Bassoon
56. Orchestra Hit 64. SynthBrass 2 72. Clarinet
Pipe Synth Lead Synth Pad

73. Piccolo 81. Lead 1 (square) 89. Pad 1 (new age)
74. Flute 82. Lead 2 (sawtooth) 90. Pad 2 (warm)
75. Recorder 83. Lead 3 (calliope) 91. Pad 3 (polysynth)
76. Pan Flute 84. Lead 4 (chi�) 92. Pad 4 (choir)
77. Blown Bo�le 85. Lead 5 (charang) 93. Pad 5 (bowed)
78. Skakuhachi 86. Lead 6 (voice) 94. Pad 6 (metallic)
79. Whistle 87. Lead 7 (��hs) 95. Pad 7 (halo)
80. Ocarina 88. Lead 8 (bass+lead) 96. Pad 8 (sweep)
Synth E�ects Ethnic Percussive

97. FX 1 (rain) 105. Sitar 113. Tinkle Bell
98. FX 2 (soundtrack) 106. Banjo 114. Agogo

184 APPENDIX A. BITS & PIECES

99. FX 3 (crystal) 107. Shamisen 115. Steel Drums
100. FX 4 (atmosphere) 108. Koto 116. Woodblock
101. FX 5 (brightness) 109. Kalimba 117. Taiko Drum
102. FX 6 (goblins) 110. Bagpipe 118. Melodic Tom
103. FX 7 (echoes) 111. Fiddle 119. Synth Drum
104. FX 8 (sci-�) 112. Shanai 120. Reverse Cymbal
Sounds E�ects

121. Guitar Fret Noise
122. Breath Noise
123. Seashore
124. Bird Tweet
125. Telephone Ring
126. Helicopter
127. Applause
128. Gunshot

A.8.2 Percussion Instruments

�ese instruments can be used with %%MIDI drum, or using the corresponding note in the
MIDI channel 10.

35. B,,, Acoustic Bass
Drum

36. C,, Bass Drum 1 37. ^C,, Side Stick

38. D,, Acoustic Snare 39. ^D,, Hand Clap 40. E,, Electric Snare
41. F,, Low Floor Tom 42. ^F,, Closed Hi Hat 43. G,, High Floor Tom
44. ^G,, Pedal Hi-Hat 45. A,, Low Tom 46. ^A,, Open Hi-Hat
47. B,, Low-Mid Tom 48. C, Hi Mid Tom 49. ^C, Crash Cymbal 1
50. D, High Tom 51. ^D, Ride Cymbal 1 52. E, Chinese Cymbal
53. F, Ride Bell 54. ^F, Tambourine 55. G, Splash Cymbal
56. ^G, Cowbell 57. A, Crash Cymbal 2 58. ^A, Vibraslap
59. B, Ride Cymbal 2 60. C Hi Bongo 61. ^C Low Bongo
62. D Mute Hi Conga 63. ^D Open Hi Conga 64. E Low Conga
65. F High Timbale 66. ^F Low Timbale 67. G High Agogo
68. ^G Low Agogo 69. A Cabasa 70. ^A Maracas
71. B Short Whistle 72. c Long Whistle 73. ^c Short Guiro
74. d Long Guiro 75. ^d Claves 76. e Hi Wood Block
77. f Low Wood Block 78. ^f Mute Cuica 79. g Open Cuica
80. ^g Mute Triangle 81. a Open Triangle

This manual explains how to make beautiful sheet
music and MIDI �les using a computer, some free

and open source so�ware, and the Abc 2 music no-
tation. It is aimed at musicians with some computer
expertise who don’t want to spend a lot of money
on commercial music so�ware. Music teachers, stu-
dents, amateur and professional musicians may ben-
e�t greatly from this guide and from the so�ware it
describes.

	About This Guide
	Music on the Computer with Abc 2
	Introduction
	Requirements
	Software
	Why Abc?

	Getting Started
	Getting the Programs
	Which Program?
	abcm2ps
	abc2svg
	abcMIDI
	Abc/MusicXML Translators
	TradMusician
	Other Programs

	Abc in a Nutshell
	Our First Abc File
	Using the Command Line
	Windows
	GNU/Linux, macOS
	Android (expert users only!)
	Explanations, for everybody

	Melody
	Notes and Symbols
	Manual or Automatic Formatting?
	Note Pitch: A-G a-g ,'
	Note Length: L:
	Rests and Spacing: z Z x y
	Accidentals: ^_ =
	Dotted Notes: < >
	Ties, Slurs, Staccato: - () .
	Tuplets: (n
	Chords: []
	Grace Notes: ~ {}
	Inline Fields

	Music Properties
	Key signatures and Clefs: K:
	Key Signatures
	Clefs
	Changing the Clef: I:clef
	Bass and Alto Clefs Compatibility Issues

	Time Signature: M:
	Bars, Repeats, Endings: | / : []
	Lyrics: W: w:
	Title, Composer, Tempo: T: C: Q:
	Text and Foreign Characters
	UTF-8 Characters and Symbols
	Parts: P:
	Accompaniment Chords: ""
	Text Annotations: "_̂ <>@"
	Courtesy Accidentals

	Decorations: !symbol!
	Symbol Lines: s:
	Figured Bass

	Redefinable Symbols: U:

	Harmony
	Polyphony in Abc 2
	Voices and Systems: V:
	Positioning Voices: %%score
	Typesetting Reductions
	Voice Overlay: &
	Writing Clean Sources

	Formatting
	Formatting Parameters
	How Directives Work
	Using Format and Header Files
	Changing Parameters
	Directives as I: Fields
	Using Fonts and Text
	Line, Staff, Tune, and Page Breaks
	Avoiding Line Breaks
	Controlling Measures
	Voice Size
	Repeated Sequences (Simile)
	The Grand Staff
	Change of System
	Blank Sheet Music

	Positioning Music Elements
	Customising Slurs, Beams, Stems, and Flags
	Customising Accompaniment Chords
	Customising Tuplets
	Customising Volta Brackets
	Combining Voices
	Colours
	Multi-column Output
	Customising Titles
	Headers and Footers
	Inserting Graphics Files (abcm2ps)
	Numbering Measures and Pages
	Staff Gaps
	Ambitus (abc2svg)
	Embedding XHTML (abc2svg)
	Saving Space

	Transposition
	Using %%transpose
	K: and V: Modifiers (abc2svg)

	Tablatures and Fingering Charts
	Tablatures
	Chord Grids
	Chord Diagrams
	Fingering Charts (abcm2ps)

	Tune Collections
	Index Number: X:
	Information Fields
	Including Abc Files
	Songbooks
	Selecting Tunes
	Incipits

	Playing
	MIDI Conversion
	A Software MIDI Player: TiMidity++
	Our First Midi
	Example: How To Make a Ringtone
	Supported Decorations
	%%MIDI Directives
	Avoiding abcm2ps Extensions
	Voices and Instruments
	MIDI Transposition
	Changing Instruments in Repeats
	Accompaniment Chords
	New Accompaniment Chords
	Customising Beats
	Arpeggios
	Broken Rhythm
	Drum Patterns
	Percussion Instruments and Drum Mapping
	Portamento
	Drone
	Global Settings

	Differences and Incompatibilities

	Advanced Customisation
	Font Directives, Revisited (abc2svg)
	New PostScript and SVG Routines
	Defining New Symbols

	Note Mapping
	Renaming Symbols
	Accompaniment Chords in Italian Notation
	Adding Text Fonts (abcm2ps)
	Adding Text Fonts (abc2svg)
	Using SMuFL Fonts

	Abc and MusicXML
	Introducing MusicXML
	Using xml2abc-js
	Using abc2xml.py and xml2abc.py
	Basic Options

	Converting Abc to MuseScore
	Converting Abc to Lilypond
	Converting Abc to Verovio
	abc2xml.py Extensions
	Tremolo
	Percussion Maps
	Tablatures, Revisited

	Abc/MusicXML Conversion: Limitations

	Advanced Usage
	Cropping PDF Files
	Using abc2svg in the Command Line
	Running abc2svg Scripts
	Converting html to PDF
	Inserting Music in Word Processors
	Inserting Music in LaTeX

	Using abc.sty
	Converting MIDI to Abc
	The abcpp Preprocessor
	Basic Usage
	Redefining Symbols

	Conversions: abc2abc

	The End
	What Now?
	Final Comments
	In Loving Memory of Annarosa Del Piero, 1930–2000

	Bits & Pieces
	Web Links
	Abc Fields
	ABC Summary
	Common Errors and Bad Practices
	Syntax Errors
	Character Encoding
	Lines Too Long
	X: Number in Titles
	Ties vs. Slurs
	Outdated Syntax
	Q: Syntax
	! as End of Line
	+ for Decorations and Chords
	\ in w: Lines
	middle= Specifier

	Formatting Directives
	Page Format
	Text
	Fonts
	Spacing
	Other Directives
	Deprecated Directives

	PostScript Fonts
	abcMIDI Directives
	MIDI Instruments
	Standard instruments
	Percussion Instruments

